

NH3 and CO2 as natural working fluids

Petter Nekså SINTEF Energy Research, Norway.

Refrigerants, what is important?

Energy efficiency

Differences in thermophysical properties gives the refrigerants unique characteristics

However, all refrigerants can in principle obtain the theoretical maximum energy efficiency (COP) for a given application

System and component development, together with an optimum system integration is the key tasks

Local safety

Proper engineering will reduce risk to acceptable levels, even for toxic and flammable refrigerants, but cost is an issue

Environmental issues

CFCs and HCFCs has failed due to ozone depletion (Montreal protocol)

HFCs has failed due to high global warming impact (Kyoto agreement)

Are we ready for a new range of synthetic refrigerants?

CO2 and NH3 are known not to be harmful for the environment

Ammonia, NH₃, the old giant

Application status

Industrial refrigeration: since 1872 Preferred refrigerant in most of the world (80% in Europe, 90% in US est) Expected to become preferred option in developing world and Article 5

Marine refrigeration: increasing share

Heat pumps: medium to large, increasing

Lower capacity systems under development

Local safety developments

Combination with CO_2 in cascade Charge minimisation Scrubber systems eliminate emissions to the atmosphere for medium sized systems

Statement

Carbon dioxide, CO2, coming back

Application, technology available

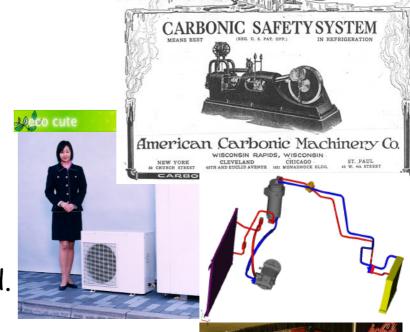
Heat pump water heaters Mobile air conditioning systems Commercial refrigeration systems Beverage coolers

Under development

Mobile heat pumps

Transport refrigeration systems (containers, truck, marine)

Residential heat pumps and air cond.


Vending machines, combined hot-

cold

Heat pump dryers Water chillers Industrial refrigeration

Energy efficiency, an issue?

Superior energy efficiency is proven in many applications. Ongoing development will increase efficiency further and enables gammers is likerion in the West of the applications - Paris - June 12, 2008

Conclusion on CO₂ and NH₃

CO₂ and NH₃ (and HCs) are complimentary refrigerants which may cover most applications, alone or together

NH₃ has a dominant role in industrial refrigeration and new applications are coming

Safety risk of NH_3 can be reduced by combining with CO_2 in cascade systems, charge minimisaton and by using scrubbers

CO₂ systems has been commercialised in some applications and more are coming

CO₂ systems will contribute to reduction in GHG emissions both by eliminating direct emissions and through reduced indirect emissions due to better energy efficiency

 CO_2 and NH_3 are natural substances known not to be harmful to the environment, thus long term alternatives

Is there any reason to start using a new generation of artifical substances which have unknown and known negative effects to the local and global environment?