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Chapter 0

COURSE INFORMATION &
SYLLABUS

0.1 Course Information

• Prerequisite: Stat 420

• Required Texts

– Berry, D. A. & Lindgren, B. W. (1996). Statistics: Theory and Methods,
2nd edition. Belmont CA: Wadsworth Publishing Co.

– Lecture Notes

• Instructor

– Robert J. Boik, 2–260 Wilson, 994-5339, rjboik@math.montana.edu.

– Office Hours: Monday & Wednesday 11:00–11:50 & 2:10–3:00; Friday
11:00–11:50.

• Holidays: Monday Jan 20, MLK Day; Monday Feb 17 (Presidents Day);
March 10–14 (Spring Break); Apr 18 (University Day)

• Drop dates: Wednesday Feb 5 is the last day to drop without a W grade;
Friday April 25 is the last day to drop.

• Grading: 600 Points Total; Grade cutoffs (percentages) — 90, 80, 70, 60; All
exams are closed book. Tables and equations will be provided.

– Homework: 200 points

– Exam-1, Wed Feb 19, 6:10–?: 100 points, Wilson 1-139

– Exam-2, Monday March 31, 6:10-?: 100 points, Wilson 1-141

– Comprehensive Final, Monday, May 5, 8:00–9:50 AM: 200 points
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8 CHAPTER 0. COURSE INFORMATION & SYLLABUS

• Homepage: http://www.math.montana.edu/∼rjboik/classes/424/stat.424.html
Homework assignments and revised lecture notes will be posted on the Stat
424 home page.

0.2 Syllabus

1. Continuous Random Variables: Remainder of Chapter 5

2. Families of Continuous Distributions: Chapter 6

3. Data: Chapter 7

4. Samples, Statistics, and Sampling Distributions: Chapter 8

5. Estimation: Chapter 9

6. Significance Testing: Chapter 10

7. Tests as Decision Rules: Chapter 11

0.3 Study Suggestions

1. How to do poorly in Stat 424.

(a) Come to class.

(b) Do home work.

(c) When home work is returned, pay most attention to your score.

(d) Skim the text to see if it matches the lecture.

(e) Read notes to prepare for exams.

Except for item (c), there is nothing in the above list that hurts performance
in 424. On the contrary, if you do not come to class etc, then you will likely do
worse. The problem with the above list is that the suggestions are not active
enough. The way to learn probability and mathematical statistics is to do
probability and mathematical statistics. Watching me do a problem or a proof
helps, but it is not enough. You must do the problem or proof yourself.

2. How to do well in Stat 424.

(a) In class

• Make a note of all new terms.

• Make a note of new results or theorems.

• Make a note of which results or theorems were proven.
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• For each proof, make a note of the main steps, especially of how the
proof begins.

(b) Re-write notes at home

• Organize ideas and carefuly define all new terms. Use the text and
the bound lecture notes for help.

• Write-up each proof, filling in details. Use the text and the bound
lecture notes for help.

• Review weak areas. For example, a proof may use certain
mathematical tools and/or background material in probability and
statistics. If your knowledge of the tools and/or background is weak,
then review the material. Summarize your review in your notes. Use
the text and the bound lecture notes for help.

(c) Prepare for exams.

• Practice—re-work homework problems from scratch. Be careful to
not make the same mistakes as were made on the original home
work. Learn from the mistakes on the graded home work.

• Practice—take the practice exam with notes, text, and bound lecture
notes as aids.

• Practice—re-take the practice exam without notes, text, and bound
lecture notes as aids.

• Practice—re-work proofs without notes, text, and bound lecture
notes as aids.

0.4 Types of Proofs

1. Proof by Construction: To prove the claim “If A then B.” start by assuming
that A is true. Ask yourself what are the sufficient conditions for B to be true.
Show that if A is true, then one or more of the sufficient conditions for B are
true. A proof by construction essentially constructs B from A.

2. Proof by Contradiction: To prove the claim “If A then B.” start by assuming
that A is true and that B is false. Work forward from both of these
assumptions and show that they imply a statement that obviously is false. For
example, if A is true and B is false, then Var(X) < 0. This false statement
contradicts the possibility that A can be true and B can be false. Therefore, if
A is true, B also must be true.

3. Proof by Contrapositive: This is similar to the proof by contradiction. To
prove the claim “If A then B.” start by assuming that A is true and that B is
false. Work forward only from the assumption that B is false and show that it
implies that A also must be false. This contradicts the assumptions that A is
true and B is false. Therefore, if A is true, B also must be true.
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4. Proof by Induction: To prove the claim that “If A then B1, B2, B3, . . . , B∞ all
are true,” start by proving the claim “If A then B1. Any of the above types of
proof may be used to prove this claim. Then prove the claim “If A and Bk

then Bk+1. The proofs of the two claims imply, by induction, that A implies
that B1, B2, . . . , B∞ all are true.



Chapter 5

CONTINUOUS RANDOM
VARIABLES

5.1 Cumulative Distribution Function (CDF)

1. Definition: Let X be a random variable. Then the cdf of X is denoted by
FX(x) and defined by

FX(x) = P (X ≤ x).

If X is the only random variable under consideration, then FX(x) can be
written as F (x).

2. Example: Discrete Distribution. Suppose that X ∼ Bin(3, 0.5). Then F (x) is
a step function and can be written as

F (x) =





0 x ∈ (−∞, 0);

1
8

x ∈ [0, 1);

1
2

x ∈ [1, 2);

7
8

x ∈ [2, 3);

1 x ∈ [3,∞).

3. Example: Continuous Distribution. Consider modeling the probability of
vehicle accidents on I-94 in the Gallatin Valley by a Poisson process with rate
λ per year. Let T be the time until the first accident. Then

P (T ≤ t) = P (at least one accident in time t)

= 1 − P (no accidents in time t) = 1 − e−λλ0

0!
= 1 − e−λt.

Therefore,

F (t) =

{
0 t < 0;

1 − e−λt t ≥ 0.

11



12 CHAPTER 5. CONTINUOUS RANDOM VARIABLES

4. Example: Uniform Distribution. Suppose that X is a random variable with
support S = [a, b], where b > a. Further, suppose that the probability that X
falls in an interval in S is proportional to the length of the interval. That is,
P (x1 ≤ X ≤ x2) = λ(x2 − x1) for a ≤ x1 ≤ x2 ≤ b. To solve for λ, let x1 = a
and x2 = b. then

P (a ≤ X ≤ b) = 1 = λ(b− a) =⇒ λ =
1

b− a
.

Accordingly, the cdf is

F (x) = P (X ≤ x) = P (a ≤ X ≤ x) =





0 x < a;

x− a

b− a
x ∈ [a, b];

1 x > b.

In this case, X is said to have a uniform distribution: X ∼ Unif(a, b).

5. Properties of a cdf

(a) F (−∞) = 0 and F (∞) = 1. Your text tries (without success) to motivate
this result by using equation 1 on page 157. Ignore the discussion on the
bottom of page 160 and the top of page 161.

(b) F is non-decreasing; i.e., F (a) ≤ F (b) whenever a ≤ b.

(c) F (x) is right continuous. That is, limε→0+ F (x + ε) = F (x).

6. Let X be a rv with cdf F (x).

(a) If b ≥ a, then P (a < X ≤ b) = F (b) − F (a).

(b) For any x, P (X = x) = lim
ε→0+

P (x− ε < X ≤ x) = F (x) − F (x−), where

F (x−) is F evaluated as x− ε and ε is an infinitesimally small positive
number. If the cdf of X is continuous from the left, then F (x−) = F (x)
and P (X = x) = 0. If the cdf of X has a jump at x, then F (x) − F (x−)
is the size of the jump.

(c) Example: Problem 5-8.

7. Definition of Continuous Distribution: The distribution of the rv X is said to
be continuous if the cdf is continuous at each x and the cdf is differentiable
(except, possibly, at a countable number of points).

8. Monotonic transformations of a continuous rv: Let X be a continuous rv with
cdf FX(x).

(a) Suppose that g(X) is a continuous one-to-one increasing function. Then
for y in the counter-domain (range) of g, the inverse function x = g−1(y)
exists. Let Y = g(X). Find the cdf of Y . Solution:

P (Y ≤ y) = P [g(X) ≤ y] = P (X ≤ g−1(y)] = FX [g−1(y)].
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(b) Suppose that g(X) is a continuous one-to-one decreasing function. Then
for y in the counter-domain (range) of g, the inverse function x = g−1(y)
exists. Let Y = g(X). Find the cdf of Y . Solution:

P (Y ≤ y) = P [g(X) ≤ y] = P (X > g−1(y)] = 1 − FX [g−1(y)].

(c) Example: Suppose that X ∼ Unif(0, 1), and Y = g(X) = hX + k where
h < 0. Then, X = g−1(Y ) = (Y − k)/h;

FX(x) =





0 x < 0;

x x ∈ [0, 1];

1 x > 1,

and

FY (y) = 1 − Fx[(y − k)/h] =





0 y < h + k;

y − (h + k)

−k y ∈ [h+ k, k];

1 y > k,

That is, Y ∼ Unif(h+ k, k).

(d) Inverse CDF Transformation.

i. Suppose that X is a continuous rv having a strictly increasing cdf
FX(x). Recall that a strictly monotone function has an inverse.
Denote the inverse of the cdf by F−1

X . That is, if FX(x) = y, then
F−1

X (y) = x. Let Y = FX(X). Then the distribution of Y is
Unif(0, 1).

Proof: If W ∼ Unif(0, 1), then the cdf of W is FW (w) = w. The cdf
of Y is

FY (y) = P (Y ≤ y) = P (FX(X) ≤ y) = P [X ≤ F−1
X (y)]

= FX

[
F−1

X (y)
]

= y.

If Y has support [0, 1] and FY (y) = y, then it must be true that
Y ∼ Unif(0, 1).

ii. Let U be a rv with distribution U ∼ Unif(0, 1). Suppose that FX(x)
is a strictly increasing cdf for a continuous random variable X. Then
the cdf of the rv F−1

X (U) is FX(x).

Proof:

P
[
F−1

X (U) ≤ x
]

= P [U ≤ FX(x)] = FU [FX(x)] = FX(x)

because FU(u) = u.
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(e) Application of inverse cdf transformation: Given U1, U2, . . . , Un, a
random sample from Unif(0, 1), generate a random sample from FX(x).
Solution: Let Xi = F−1

X (Ui) for i = 1, . . . , n.

i. Example 1: Suppose that FX(x) = 1 − e−λx for x > 0, where λ > 0.
Then Xi = − ln(1 − Ui)/λ for i = 1, . . . , n is a random sample from
FX .

ii. Example 2: Suppose that

FX(x) =

[
1 −

(a
x

)b
]
I(a,∞)(x),

where a > 0 and b > 0 are constants. Then Xi = a(1 − Ui)
−b for

i = 1, . . . , n is a random sample from FX .

9. Non-monotonic transformations of a continuous rv. Let X be a continuous rv
with cdf FX(x). Suppose that Y = g(X) is a continuous but non-monotonic
function. As in the case of monotonic functions,
FY (y) = P (Y ≤ y) = P [g(X) ≤ y], but in this case each inverse solution
x = g−1(y) must be used to find an expression for FY (y) in terms of
FX [g−1(y)]. For example, suppose that X ∼ Unif(−1, 2) and g(X) = Y = X2.
Note that x = ±√

y for y ∈ [0, 1] and x = +
√
y for y ∈ (1, 4]. The cdf of Y is

FY (y) = P (X2 ≤ y) =

{
P (−√

y ≤ X ≤ √
y) y ∈ [0, 1];

P (X ≤ √
y) y ∈ (1, 4]

=

{
FX(

√
y) − FX(−√

y) y ∈ [0, 1];

FX(
√
y) y ∈ (1, 4]

=





0 y < 0;

2
√
y/3 y ∈ [0, 1];

(
√
y + 1)/3 y ∈ (1, 4];

1 y > 4;

Plot the function g(x) over x ∈ SX as an aid to finding the inverse solutions
x = g−1(y).

5.2 Density and the Probability Element

1. Mathematical Result: Assume that F (x) is a continuous cdf. Let g(x+m) be
a differentiable function and let y = x +m. Then

d

dm
g(x+m)

∣∣∣∣
m=0

=
d

d y
g(y)× d

dm
y

∣∣∣∣
m=0

=
d

d y
g(y)

∣∣∣∣
m=0

=
d

dx
g(x)

by the chain rule.
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2. Probability Element: Suppose that X is a continuous rv. Let ∆x be a small
positive number. Define h(a, b) as

h(a, b)
def
= P (a ≤ X ≤ a+ b) = FX(a+ b) − FX(a).

Expand h(x,∆x) = P (x ≤ X ≤ x + ∆x) in a Taylor series around ∆x = 0:

h(x,∆x) = F (x+ ∆x) − F (x)

= h(x, 0) +
d

d∆x
h(x,∆x)

∣∣∣∣
∆x=0

∆x + o(∆x)

= 0 +
d

d∆x
F (x+ ∆x)

∣∣∣∣
∆x=0

∆x + o(∆x)

=

[
d

dx
F (x)

]
∆x + o(∆x), where

lim
∆x→0

o(∆x)

∆x
= 0.

The function

dF (x) =

[
d

dx
F (x)

]
∆x

is called the differential. In the field of statistics, the differential of a cdf is
called the probability element. The probability element is an approximation to
h(x,∆x). Note that the probability element is a linear function of the
derivative d

dx
F (x).

3. Example; Suppose that

F (x) =

{
0 x < 0;

1 − e−3x otherwise.

Note that F (x) is a cdf. Find the probability element at x = 2 and
approximate the probability P (2 ≤ X ≤ 2.01). Solution: d

dx
F (x) = 3e−3x so

the probability element is 3e−6∆x and
P (2 ≤ X ≤ 2.01) ≈ 3e−6 × 0.01 = 0.00007436. The exact probability is
F (2.01) − F (2) = 0.00007326.

4. The average density in the interval (x, x+ ∆x) is defined as

Average density
def
=
P (x < X < x+ ∆x)

∆x
.

5. Density: The probability density function (pdf) at x is the limit of the average
density as ∆x → 0:

pdf = f(x)
def
= lim

∆x→0

P (x ≤ X ≤ x + ∆x)

∆x
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= lim
∆x→0

FX(x + ∆x) − FX(x)

∆x

=

[
d

dx
F (x)

]
∆x + o(∆x)

∆x

=
d

dx
F (x).

Note that the probability element can be written as dF (x) = f(x)∆x.

6. Example: Suppose that λ is a positive real number. If

F (x) =

{
1 − e−λx x ≥ 0;

0 otherwise.
then f(x) =

d

dx
F (x) =

{
λe−λx x ≥ 0;

0 otherwise.

7. Example: If X ∼ Unif(a, b), then

F (x) =





0 x < a;

x−a
b−a

x ∈ [a, b];

1 x > b

and f(x) =
d

dx
F (x) =





0 x < a;

1
b−a

x ∈ [a, b];

0 x > b.

8. Properties of a pdf

i f(x) ≥ 0 for all x.

ii

∫ ∞

−∞

f(x) = 1

9. Relationship between pdf and cdf: If X is a continuous rv with pdf f(x) and
cdf F (x), then

f(x) =
d

dx
F (x)

F (x) =

∫ x

−∞

f(u)du and

P (a < X < b) = P (a ≤ X ≤ b) = P (a < X ≤ b)

= P (a ≤ X < b) = F (b) − F (a) =

∫ b

a

f(x)dx.

10. PDF example - Cauchy distribution. Let f(x) = c/(1 + x2) for −∞ < x <∞
and where c is a constant. Note that f(x) is nonnegative and

∫ ∞

−∞

1

1 + x2
dx = arctan(x)

∣∣∣∣
∞

−∞

=
π

2
− −π

2
= π.
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Accordingly, if we let c = 1/π, then

f(x) =
1

π(1 + x2)

is a pdf. It is called the Cauchy pdf. The corresponding cdf is

F (x) =

∫ x

−∞

1

π(1 + u2)
du =

arctan(u)

π

∣∣∣∣
x

−∞

=
1

π

[
arctan(x) +

π

2

]
=

arctan(x)

π
+

1

2
.

11. PDF example - Gamma distribution: A more general waiting time
distribution: Let T be the time of arrival of the rth event in a Poisson process
with rate parameter λ. Find the pdf of T . Solution: T ∈ (t, t+ ∆t) if and only
if (a) r − 1 events occur before time t and (b) one event occurs in the interval
(t, t+∆t). The probability that two or more events occur in (t, t+∆t) is o(∆t)
and can be ignored. By the Poisson assumptions, outcomes (a) and (b) are
independent and the probability of outcome (b) is λ∆t+ o(∆t). Accordingly,

P (t < T < t+ ∆t) ≈ f(t)∆t =
e−λt(λt)r−1

(r − 1)!
× λ∆t

=

[
e−λtλrtr−1

(r − 1)!

]
∆t

and the pdf is

f(t) =





0 t < 0;

e−λtλrtr−1

(r − 1)!
t ≥ 0

=
e−λtλrtr−1

Γ(r)
I[0,∞)(t).

12. Transformations with Single-Valued Inverses: If X is a continuous random
variable with pdf fX(x) and Y = g(X) is a single-valued differentiable
function of X, then the pdf of Y is

fY (y) = fX

[
g−1(y)

] ∣∣∣∣
d

d y
g−1(y)

∣∣∣∣

for y ∈ Sg(x) (i.e., support of Y = g(X)). The term

J(y) =
d

d y
g−1(y)

is called the Jacobian of the transformation.
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(a) Justification 1: Suppose that Y = g(X) is strictly increasing. Then
FY (y) = FX [g−1(y)] and

fY (y) =
d

dy
FY (y) = fX

[
g−1(y)

] d
dy
g−1(y)

= fX

[
g−1(y)

] ∣∣∣∣
d

dy
g−1(y)

∣∣∣∣

because the Jacobian is positive. Suppose that Y = g(X) is strictly
decreasing. Then FY (y) = 1 − FX [g−1(y)] and

fY (y) =
d

dy
[1 − FY (y)] = −fX

[
g−1(y)

] d
dy
g−1(y)

= fX

[
g−1(y)

] ∣∣∣∣
d

dy
g−1(y)

∣∣∣∣

because the Jacobian is negative.

(b) Justification 2: Suppose that g(x) is strictly increasing. Recall that

P (x ≤ X ≤ x+ ∆x) = fX(x)∆x + o(∆x).

Note that

x ≤ X ≤ x + ∆x⇐⇒ g(x) ≤ g(X) ≤ g(x+ ∆x).

Accordingly,

P (x ≤ X ≤ x+ ∆x) = P (y ≤ Y ≤ y + ∆y) = fY (y)∆y + o(∆y)

= fX(x)∆x + o(∆x)

where y + ∆y = g(x+ ∆x). Expanding g(x+ ∆x) around ∆x = 0 reveals
that

y + ∆y = g(x+ ∆x) = g(x) +
d g(x)

d x
∆x + o(∆x).

Also,

y = g(x) =⇒ g−1(y) = x

=⇒ d g−1(y)

d y
=
d x

d y

=⇒ d y

d x
=
d g(x)

d x
=

[
d g−1(y)

d y

]−1

=⇒ y + ∆y = g(x) +

[
d g−1(y)

d y

]−1

∆x

=⇒ ∆y =

[
d g−1(y)

d y

]−1

∆x
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=⇒ ∆x =
d g−1(y)

d y
∆y.

Lastly, equating fX(x)∆x to fY (y)∆y reveals that

fY (y)∆y = fX(x)∆x = fX

[
g−1(y)

]
∆x

= fX

[
g−1(y)

] d g−1(y)

d y
∆y

=⇒ fY (y) = fX

[
g−1(y)

] d g−1(y)

d y
.

The Jacobian dg−1(y)
dy

is positive for an increasing function, so the absolute
value operation is not necessary. A similar argument can be made for the
case when g(x) is strictly decreasing.

13. Transformations with Multiple-Valued Inverses: If g(x) has more than one
inverse function, then a separate probability element must be calculated for
each of the inverses. For example, suppose that X ∼ Unif(−1, 2) and
Y = g(X) = X2. There are two inverse functions for y ∈ [0, 1], namely
x = −√

y and x = +
√
y. There is a single inverse function for y ∈ (1, 4]. The

pdf of Y is found as

f(y) =





0 y < 0;

f(−√
y)

∣∣∣∣
−d√y
dy

∣∣∣∣+ f(
√
y)

∣∣∣∣
d
√
y

dy

∣∣∣∣ y ∈ [0, 1];

f(
√
y)

∣∣∣∣
d
√
y

dy

∣∣∣∣ y ∈ (1, 4];

0 y > 4.

=





0 y < 0;

1

3
√
y

y ∈ [0, 1];

1

6
√
y

y ∈ (1, 4];

0 y > 4.

5.3 The Median and Other Percentiles

1. Definition: The number xp is said to be the 100pth percentile of the
distribution of X if xp satisfies

FX(xp) = P (X ≤ xp) = p.

2. If the cdf FX(x) is strictly increasing, then xp = F−1
X (p) and xp is unique.
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3. If FX(x) is not strictly increasing, then xp may not be unique.

4. Median: The median is the 50th percentile (i.e., p = 0.5).

5. Quartiles: The first and third quartiles are x0.25 and x0.75 respectively.

6. Example: If X ∼ Unif(a, b), then (xp − a)/(b− a) = p; xp = a + p(b− a); and
x0.5 = (a+ b)/2.

7. Example: If FX(x) = 1 − e−λx (i.e., waiting time distribution), then
1 − e−λxp = p; xp = − ln(1 − p)/λ; and x0.5 = ln(2)/λ.

8. Example—Cauchy: Suppose that X is a random variable with pdf

f(x) =
1

σπ

[
1 +

(x− µ)2

σ2

] ,

where −∞ < x <∞; σ > 0; and µ is a finite number. Then

F (x) =

∫ x

−∞

f(u)du =

∫ x−µ
σ

−∞

1

π(1 + z2)
dz

(
make the change of variable from x to z =

x− µ

σ

)

=
1

π
arctan

(
x− µ

σ

)
+

1

2
.

Accordingly,

F (xp) = p =⇒
xp = µ+ σ tan [π(p− 0.5)] ;

x0.25 = µ+ σ tan [π(0.25 − 0.5)] = µ− σ;

x0.5 = µ+ σ tan(0) = µ; and

x0.75 = µ+ σ tan [π(0.75 − 0.5)] = µ+ σ.

9. Definition Symmetric Distribution: A distribution is said to be symmetric
around c if FX(c− δ) = 1 − FX(c+ δ) for all δ.

10. Definition Symmetric Distribution: A distribution is said to be symmetric
around c if fX(c− δ) = fX(c+ δ) for all δ.

11. Median of a symmetric distribution. Suppose that the distribution of X is
symmetric around c. Then, set δ to c− x0.5 to obtain

FX(x0.5) =
1

2
= 1 − FX(2c− x0.5) =⇒ FX(2c− x0.5) =

1

2
=⇒ c = x0.5.

That is, if the distribution of X is symmetric around c, then the median of the
distribution is c.
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5.4 Expected Value

1. Definition: Let X be a rv with pdf f(x). Then the expected value (or mean)
of X, if it exists, is

E(X) = µX =

∫ ∞

−∞

xf(x)dx.

2. The expectation is said to exist if the integral of the positive part of the
function is finite and the integral of the negative part of the function is finite.

5.5 Expected Value of a Function

1. Let X be a rv with pdf f(x). Then the expected value of g(X), if it exists, is

E[g(X)] =

∫ ∞

−∞

g(x)f(x)dx.

2. Linear Functions. The integral operator is linear. If g1(X) and g2(X) are
functions whose expectation exists and a, b, c are constants, then

E [ag1(X) + bg2(X) + c] = aE [g1(X)] + bE [g2(X)] + c.

3. Symmetric Distributions: If the distribution of X is symmetric around c and
the expectation exists, then E(X) = c.

Proof: Assume that the mean exists. First, show that E(X − c) = 0:

E(X − c) =

∫ ∞

−∞

(x− c)f(x)dx

=

∫ c

−∞

(x− c)f(x)dx+

∫ ∞

c

(x− c)f(x)dx

( let x = c− u in integral 1 and let x = c + u in integral 2)

= −
∫ ∞

0

uf(c− u)du+

∫ ∞

0

uf(c+ u)du

=

∫ ∞

0

u [f(c+ u) − f(c− u)] du = 0

by symmetry of the pdf around c. Now use E(X − c) = 0 ⇐⇒ E(X) = c.

4. Example: Suppose that X ∼ Unif(a, b). That is,

f(x) =





1

b− a
x ∈ [a, b];

0 otherwise.
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A sketch of the pdf shows that the distribution is symmetric around (a+ b)/2.
More formally,

f

(
a+ b

2
− δ

)
= f

(
a + b

2
+ δ

)
=





1

b− a
δ ∈

[
− b−a

2
, b−a

2

]
;

0 otherwise.

Accordingly, E(X) = (a+ b)/2. Alternatively, the expectation can be found by
integrating xf(x):

E(X) =

∫ ∞

−∞

xf(x) dx =

∫ b

a

x

b− a
dx

=
x2

2(b− a)

∣∣∣∣
b

a

=
b2 − a2

2(b− a)

=
(b− a)(b+ a)

2(b− a)
=
a+ b

2
.

5. Example: Suppose that X has a Cauchy distribution. The pdf is

f(x) =
1

σπ

[
1 +

(x− µ)2

σ2

] ,

where µ and σ are constants that satisfy |µ| <∞ and σ ∈ (0,∞). By
inspection, it is apparent that the pdf is symmetric around µ. Nonetheless,
the expectation is not µ, because the expectation does not exist. That is,

∫ ∞

−∞

xf(x)dx =

∫ ∞

−∞

x

σπ

[
1 +

(x− µ)2

σ2

]dx

= µ+ σ

∫ ∞

−∞

z

π(1 + z2)
dz where z =

x− µ

σ

= µ+ σ

∫ 0

−∞

z

π(1 + z2)
dz + σ

∫ ∞

0

z

π(1 + z2)
dz

= µ+ σ
ln(1 + z2)

2π

∣∣∣∣
0

−∞

+ σ
ln(1 + z2)

2π

∣∣∣∣
∞

0

and neither the positive nor the negative part is finite.

6. Example: Waiting time distribution. Suppose that X is a rv with pdf λe−λx

for x > 0 and where λ > 0. Then, using integration by parts,

E(X) =

∫ ∞

0

xλe−λxdx = −xe−λx

∣∣∣∣
∞

0

+

∫ ∞

0

e−λxdx

= 0 − 1

λ
e−λx

∣∣∣∣
∞

0

=
1

λ
.
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5.6 Average Deviations

1. Variance

(a) Definition:

Var(X)
def
= E(X − µX)2 =

∫ ∞

−∞

(x− µX)2f(x)dx

if the expectation exists. It is conventional to denote the variance of X
by σ2

X .

(b) Computational formula: Be able to verify that
Var(X) = E(X2) − [E(X)]2.

(c) Example: Suppose that X ∼ Unif(a, b). Then

E(Xr) =

∫ b

a

xr

b− a
dx =

xr+1

(r + 1)(b− a)

∣∣∣∣
b

a

=
br+1 − ar+1

(r + 1)(b− a)
.

Accordingly, µX = (a+ b)/2,

E(X2) =
b3 − a3

3(b− a)
=

(b− a)(b2 + ab + a2)

3(b− a)
=
b2 + ab + a2

3
and

Var(X) =
b2 + ab + a2

3
− (b + a)2

4
=
b2 − 2ab + a2

12
=

(b− a)2

12
.

(d) Example: Suppose that f(x) = λe−λx for x > 0 and where λ > 0. Then
E(X) = 1/λ,

E(X2) =

∫ ∞

0

x2λe−λxdx

= −x2e−λx

∣∣∣∣
∞

0

+

∫ ∞

0

2xe−λxdx = 0 +
2

λ2
and

Var(X) =
2

λ2
− 1

λ2
=

1

λ2
.

2. MAD

(a) Definition:

Mad(X)
def
= E(|X − µX |) =

∫ ∞

−∞

|x− µX |f(x)dx.

(b) Alternative expression: First, note that

E(|X − c|) =

∫ c

−∞

(c− x)f(x)dx +

∫ ∞

c

(x− c)f(x)dx
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= c [2FX(c) − 1] −
∫ c

−∞

xf(x)dx +

∫ ∞

c

xf(x)dx.

Accordingly,

Mad(X) = µX [2FX(µX) − 1] −
∫ µX

−∞

xf(x)dx +

∫ ∞

µX

xf(x)dx.

(c) Leibnitz’s Rule: Suppose that a(θ), b(θ), and g(x, θ) are differentiable
functions of θ. Then

d

dθ

∫ b(θ)

a(θ)

g(x, θ)dx = g [b(θ), θ]
d

dθ
b(θ) − g [a(θ), θ]

d

dθ
a(θ)

+

∫ b(θ)

a(θ)

d

dθ
g(x, θ)dx.

(d) Result: If the expectation E(|X − c|) exists, then the minimizer of
E(|X − c|) with respect to c is c = F−1

X (0.5) = median of X.

Proof: Set the derivative of E(|X − c|) to zero and solve for c:

d

dc
E(|X − c|)

=
d

dc

{
c [2FX(c) − 1] −

∫ c

−∞

xfX(x)dx +

∫ ∞

c

xfX(x)dx

}

= 2FX(c) − 1 + 2cfX(c) − cfX(c) − cfX(c)

= 2FX(c) − 1.

Equating the derivative to zero and solving for c reveals that c is a
solution to FX(c) = 0.5. That is, c is the median of X. Use the second
derivative test to verify that the solution is a minimizer:

d2

dc2
E(|X − c|) =

d

dc
[2FX(c) − 1] = 2fX(c) > 0

=⇒ c is a minimizer.

(e) Example: Suppose that X ∼ Unif(a, b). Then FX(a+b
2

) = 0.5 and

Mad(X) = −
∫ a+b

2

a

x

b− a
dx+

∫ b

a+b
2

x

b− a
dx =

b− a

4
.

(f) Example: Suppose that fX(x) = λe−λx for x > 0 and where λ > 0. Then
E(X) = 1/λ, Median(X) = ln(2)/λ, FX(x) = 1 − e−λx, and

Mad(X) =
1

λ

[
2 − 2e−1 − 1

]



5.7. BIVARIATE DISTRIBUTIONS 25

−
∫ λ−1

0

xλe−λxdx+

∫ ∞

λ−1

xλe−λxdx =
2

λe
,

where
∫
xλe−λxdx = −xe−λx − λ−1e−λx has been used. The mean

absolute deviation from the median is

E

∣∣∣∣X − ln(2)

λ

∣∣∣∣ = −
∫ ln(2)λ−1

0

xλe−λxdx+

∫ ∞

ln(2)λ−1

xλe−λxdx

=
ln(2)

λ
.

3. Standard Scores

(a) Let Z =
X − µX

σX
.

(b) Moments: E(Z) = 0 and Var(Z) = 1.

(c) Interpretation: Z scores are scaled in standard deviation units.

(d) Inverse Transformation: X = µX + σXZ.

5.7 Bivariate Distributions

1. Definition: A function fX,Y (x, y) is a bivariate pdf if

(i) fX,Y (x, y) ≥ 0 for all x, y and

(ii)

∫ ∞

−∞

∫ ∞

−∞

fX,Y (x, y)dxdy = 1.

2. Bivariate CDF: If fX,Y (x, y) is a bivariate pdf, then

FX,Y (x, y) = P (X ≤ x, Y ≤ y) =

∫ x

−∞

∫ y

−∞

fX,Y (u, v)dvdu.

3. Properties of a bivariate cdf:

(i) FX,Y (x,∞) = FX(x)

(ii) FX,Y (∞, y) = FY (y)

(iii) FX,Y (∞,∞) = 1

(iv) FX,Y (−∞, y) = FX,Y (x,−∞) = FX,Y (−∞,−∞) = 0

(v) fX,Y (x, y) =
∂2

∂x∂y
FX,Y (x, y).

4. Joint pdfs and joint cdfs for three or more random variables are obtained as
straightforward generalizations of the above definitions and conditions.
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5. Probability Element: fX,Y (x, y)∆x∆y is the joint probability element. That is,

P (x ≤ X ≤ x + ∆x, y ≤ Y ≤ y + ∆y) = fX,Y (x, y)∆x∆y + o(∆x∆y).

6. Example: Bivariate Uniform. If (X, Y ) ∼ Unif(a, b, c, d), then

fX,Y (x, y) =





1

(b− a)(d− c)
x ∈ (a, b), y ∈ (c, d);

0 otherwise.

For this density, the probability P (x1 ≤ X ≤ x2, y1 ≤ Y ≤ y2) is the volume of
the rectangle. For example, if (X, Y ) ∼ Unif(0, 4, 0, 6), then
P (2.5 ≤ X ≤ 3.5, 1 ≤ Y ≤ 4) = (3.5 − 2.5)(4 − 1)/(4 × 6) = 3/24. Another
example is P (X2 + Y 2 > 16) = 1 − P (X2 + Y 2 ≤ 16) = 1 − 4π/24 = 1 − π/6
because the area of a circle is πr2 and therefore, the area of a circle with
radius 4 is 16π and the area of the quarter circle in the support set is 4π.

7. Example: fX,Y (x, y) = 6
5
(x + y2) for x ∈ (0, 1) and y ∈ (0, 1). Find

P (X + Y < 1). Solution: First sketch the region of integration, then use
calculus:

P (X + Y < 1) = P (X < 1 − Y ) =

∫ 1

0

∫ 1−y

0

6

5
(x+ y2)dxdy

=
6

5

∫ 1

0

(
x2

2
+ xy2

) ∣∣∣∣
1−y

0

dy

=
6

5

∫ 1

0

(1 − y)2

2
+ (1 − y)y2dy

=
6

5

(
y

2
− y2

2
+
y3

6
+
y3

3
− y4

4

) ∣∣∣∣
1

0

=
3

10
.

8. Example: Bivariate standard normal

fX,Y (x, y) =
e−

1
2
(x2+y2)

2π
=
e−

1
2
x2

√
2π

e−
1
2
y2

√
2π

= fX(x)fY (y).

Using numerical integration, P (X + Y < 1) = 0.7602. The matlab code is

g = inline(’normpdf(y).*normcdf(1-y)’,’y’);

Prob=quadl(g,-5,5)

where ±∞ has been approximated by ±5.

9. Marginal Densities:
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(a) Integrate out unwanted variables to obtain marginal densities. For
example,

fX(x) =

∫ ∞

−∞

fX,Y (x, y)dy; fY (y) =

∫ ∞

−∞

fX,Y (x, y)dx;

and fX,Y (x, y) =

∫ ∞

−∞

∫ ∞

−∞

fW,X,Y,Z(w, x, y, z)dwdz.

(b) Example: If fX,Y (x, y) = 6
5
(x + y2) for x ∈ (0, 1) and y ∈ (0, 1), then

fX(x) =
6

5

∫ 1

0

(x+ y2)dy =
6x+ 2

5
for x ∈ (0, 1) and

fY (y) =
6

5

∫ 1

0

(x+ y2)dx =
6y2 + 3

5
for y ∈ (0, 1).

10. Expected Values

(a) The expected value of a function g(X, Y ) is

E [g(X, Y )] =

∫ ∞

−∞

∫ ∞

−∞

g(x, y)fX,Y (x, y)dxdy.

(b) Example: If fX,Y (x, y) = 6
5
(x + y2) for x ∈ (0, 1) and y ∈ (0, 1), then

E(X) =

∫ 1

0

∫ 1

0

x
6

5
(x + y2)dxdy =

∫ 1

0

3y2 + 2

5
dy =

3

5
.

5.8 Several Variables

1. The joint pdf of n continuous random variables, X1, . . . , Xn is a function that
satisfies

(i) f(x1, . . . , xn) ≥ 0, and

(ii)

∫ ∞

−∞

· · ·
∫ ∞

−∞

f(x1, . . . , xn) dx1 · · ·dxn = 1.

2. Expectations are linear regardless of the number of variables:

E

[
k∑

i=1

aigi(X1, X2, . . . , Xn)

]
=

k∑

i=1

aiE [gi(X1, X2, . . . , Xn)]

if the expectations exist.

3. Exchangeable Random variables
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(a) Let x∗1, . . . , x
∗
n be a permutation of x1, . . . , xn. Then, the joint density of

X1, . . . , Xn is said to be exchangeable if

fX1,...,Xn(x1, . . . , xn) = fX1,...,Xn(x∗1, . . . , x
∗
n)

for all x1, . . . , xn and for all permutations x∗1, . . . , x
∗
n.

(b) Result: If the joint density is exchangeable, then all marginal densities
are identical. For example,

fX1,X2(x1, x2) =

∫ ∞

−∞

fX1,X2,X3(x1, x2, x3) dx3

=

∫ ∞

−∞

fX1,X2,X3(x3, x2, x1) dx3 by exchangeability

=

∫ ∞

−∞

fX1,X2,X3(x1, x2, x3) dx1 by relabeling variables

= fX2,X3(x2, x3).

(c) Result: If the joint density is exchangeable, then all bivariate marginal
densities are identical, and so forth.

(d) Result: If the joint density is exchangeable, then the moments of Xi (if
they exist) are identical for all i.

(e) Example Suppose that fX,Y (x, y) = 2 for x ≥ 0, y ≥ 0, and x+ y ≤ 1.
Then

fX(x) =

∫ 1−x

0

2dy = 2(1 − x) for x ∈ (0, 1)

fY (y) =

∫ 1−y

0

2dx = 2(1 − y) for y ∈ (0, 1) and

E(X) = E(Y ) =
1

3
.

5.9 Covariance and Correlation

1. Review covariance and correlation results for discrete random variables
(Section 3.4) because they also hold for continuous random variables. Below
are lists of the most important definitions and results.

(a) Definitions

• Cov(X, Y )
def
= E [(X − µX)(Y − µY )].

• Cov(X, Y ) is denoted by σX,Y .

• Var(X) = Cov(X,X).

• Corr(X, Y )
def
= Cov(X, Y )/

√
Var(X) Var(Y ).

• Corr(X, Y ) is denoted by ρX,Y .
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(b) Covariance and Correlation Results (be able to prove any of these).

• Cov(X, Y ) = E(XY ) − E(X)E(Y ).

• Cauchy-Schwartz Inequality: [E(XY )]2 ≤ E(X2)E(Y 2).

• ρX,Y ∈ [−1, 1] To proof, use the Cauchy-Schwartz inequality.

• Cov(a + bX, c+ dY ) = bdCov(X, Y ).

• Cov

(
∑

i

aiXi,
∑

i

biYi

)
=
∑

i

∑

j

aibj Cov(Xi, Yj). For example,

Cov(aW + bX, cY + dZ) =
acCov(W,Y ) + adCov(W,Z) + bcCov(X, Y ) + bdCov(X,Z).

• Corr(a+ bX, c + dY ) = sign(bd) Corr(X, Y ).

• Var

(
∑

i

Xi

)
=
∑

i

∑

j

Cov(Xi, Xj) =

∑

i

Var(Xi) +
∑

i6=j

Cov(Xi, Xj).

• Parallel axis theorem: E(X − c)2 = Var(X) + (µX − c)2. Hint on
proof: first add zero X − c = (X − µX) + (µX − c), then take
expectation.

2. Example (simple linear regression with correlated observations): Suppose that
Yi = α + βxi + εi for i = 1, . . . , n and where ε1, . . . , εn have an exchangeable
distribution with E(ε1) = 0, Var(ε1) = σ2 and Cov(ε1, ε2) = ρσ2. The ordinary
least squares estimator of β is

β̂ =

n∑

i=1

(xi − x̄)(Yi − Y )

n∑

i=1

(xi − x̄)2

.

Then,

E(β̂) = β and Var(β̂) =
σ2(1 − ρ)
n∑

i=1

(xi − x̄)2

.

Proof: First examine the numerator of β̂:

n∑

i=1

(xi − x̄)(Yi − Y ) =

n∑

i=1

(xi − x̄)Yi −
n∑

i=1

(xi − x̄)Y

=

n∑

i=1

(xi − x̄)Yi − Y

n∑

i=1

(xi − x̄)

=
n∑

i=1

(xi − x̄)Yi because =
n∑

i=1

(xi − x̄) = 0.



30 CHAPTER 5. CONTINUOUS RANDOM VARIABLES

In the same manner, it can be shown that

n∑

i=1

(xi − x̄)2 =

n∑

i=1

(xi − x̄)(xi − x̄) =

n∑

i=1

(xi − x̄)xi. (∗)

Denote the denominator of β̂ by Vx. That is,

Vx =
n∑

i=1

(xi − x̄)2 =
n∑

i=1

(xi − x̄)xi.

The least squares estimator can therefore be written as

β̂ =
1

Vx

n∑

i=1

(xi − x̄)Yi or as

β̂ =
n∑

i=1

wiYi, where wi =
xi − x̄

Vv
.

Note that
n∑

i=1

wi =
1

Vx

n∑

i=1

(xi − x̄) = 0.

The expectation of β̂ is

E(β̂) =

n∑

i=1

wiE(Yi)

=
n∑

i=1

wi(α + βxi) because E(Yi) = E(α + βxi + εi) = α + βxi

= α

n∑

i=1

wi + β

n∑

i=1

wixi

= 0 +
β

Vx

n∑

i=1

(xi − x̄)xi because

n∑

i=1

wi = 0

=
β

Vx

n∑

i=1

(xi − x̄)(xi − x̄) by (∗)

=
β

Vx
Vx = β.

The variance of β̂ is

Var(β̂) = Var

(
n∑

i=1

wiYi

)

=
n∑

i=1

w2
i Var(Yi) +

∑

i6=j

wiwj Cov(Yi, Yj)
using results on variances

of linear combinations
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= σ2

n∑

i=1

w2
i + ρσ2

∑

i6=j

wiwj. (∗∗)

To complete the proof, first note that

n∑

i=1

w2
i =

1

V 2
x

n∑

i=1

(xi − x̄)2 =
1

V 2
x

Vx =
1

Vx
.

Second, note that

(
n∑

i=1

wi

)2

= 0 because
n∑

i=1

wi = 0 and

0 =

(
n∑

i=1

wi

)2

=

(
n∑

i=1

wi

)(
n∑

j=1

wj

)

=
n∑

i=1

wi

n∑

j=1

wj =
n∑

i=1

n∑

j=1

wiwj

=

n∑

i=1

w2
i +

n∑

i6=j

wiwj =
1

Vx
+

n∑

i6=j

wiwj

=⇒
n∑

i6=j

wiwj = − 1

Vx

.

Lastly, use the above two results in equation (∗∗) to obtain

Var(β̂) = σ2
n∑

i=1

w2
i + ρσ2

∑

i6=j

wiwj

=
σ2

Vx

− ρσ2

Vx

=
σ2(1 − ρ)

Vx

=
σ2(1 − ρ)
n∑

i=1

(xi − x̄)2

.

5.10 Independence

1. Definition: Continuous random variables X and Y are said to be independent
if their joint pdf factors into a product of the marginal pdfs. That is,

X Y ⇐⇒ fX,Y (x, y) = fX(x)fY (y) ∀(x, y).

2. Example: if fX,Y (x, y) = 2 for x ∈ (0, 0.5) and y ∈ (0, 1) then X Y . Note,
the joint pdf can be written as

fX,Y (x, y) = 2I(0,0.5)(x)I(0,1)(y) = 2I(0,0.5)(x) × I(0,1)(y)
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= fX(x) × fY (y)

where

IA(x) =

{
1 x ∈ A;

0 otherwise.

3. Example: if fX,Y (x, y) = 8xy for 0 ≤ x ≤ y ≤ 1, then X and Y are not
independent. Note

fX,Y (x, y) = 8xyI(0,1)(y)I(0,y)(x),

but

fX(x) =

∫ 1

x

fX,Y (x, y) dy = 4x(1 − x2)I(0,1)(x),

fY (y) =

∫ y

0

fX,Y (x, y) dx = 4y3I(0,1)(y), and

fX(x)fY (y) = 16xy3(1 − x2)I(0,1)(x)I(0,1)(y) 6= fX,Y (x, y).

4. Note: Cov(X, Y ) = 0 6=⇒ X Y . For example, if

fX,Y (x, y) =
1

3
I(1,2)(x)I(−x,x)(y),

then

E(X) =

∫ 2

1

∫ x

−x

x

3
dydx =

∫ 2

1

=
2x2

3
dx =

14

9
,

E(Y ) =

∫ 2

1

∫ x

−x

y

3
dydx =

∫ 2

1

x2 − x2

6
dx = 0, and

E(XY ) =

∫ 2

1

∫ x

−x

xy

3
dydx =

∫ 2

1

x(x2 − x2)

6
dx = 0.

Accordingly, X and Y have correlation 0, but they are not independent.

5. Result: Let A and B be subsets of the real line. Then random variables X and
Y are independent if and only if

P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B)

for all choices of sets A and B.

Proof: First assume that X Y . Let A and B be arbitrary sets on the real
line. Then

P (X ∈ A, Y ∈ B) =

∫

A

∫

B

fX,Y (x, y) dy dx

=

∫

A

∫

B

fX(x)fY (y) dy dx by independence
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=

∫

A

fX(x)

∫

B

fY (y) dy dx = P (X ∈ A)P (Y ∈ B)

Therefore,

X Y =⇒ P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B)

for any choice of sets. Second, assume that
P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B) for all choices of sets A and B.
Choose A = (−∞, x] and choose B = (−∞, y]. Then

P (X ∈ A, Y ∈ B) = P (X ≤ x, Y ≤ y) = FX,Y (x, y)

= P (X ∈ A)P (Y ∈ B) = P (X ≤ x)P (Y ≤ y) = FX(x)FY (y).

Accordingly,

fX,Y (x, y) =
∂2

∂x ∂y
FX,Y (x, y)

=
∂2

∂x ∂y
FX(x)FY (y)

=
∂

∂x
FX(x)

∂

∂y
FY (y) = fX(x)fY (y).

Therefore

P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B) =⇒ fX,Y (x, y) = fX(x)fY (y).

6. Result: If X and Y are independent, then so are g(X) and h(Y ) for any g and
h.

Proof: Let A be any set of intervals in the range of g(x) and let B be any set
of intervals in the range of h(y). Denote by g−1(A) the set of all intervals in
the support of X that satisfy x ∈ g−1(A) ⇐⇒ g(x) ∈ A. Similarly, denote by
h−1(B) the set of all intervals in the support of Y that satisfy
y ∈ h−1(B) ⇐⇒ h(y) ∈ B. If X Y , then,

P [g(X) ∈ A, h(Y ) ∈ B] = P
[
X ∈ g−1(A), Y ∈ h−1(B)

]

= P
[
X ∈ g−1(A)

]
× P

[
Y ∈ h−1(B)

]
= P [g(X) ∈ A] × P [h(Y ) ∈ B].

The above equality implies that g(X) h(Y ) because the factorization is
satisfied for all A and B in the range spaces of g(X) and h(Y ). Note that we
already proved this result for discrete random variables.

7. The previous two results readily extend to any number of random variables
(not just two).

8. Suppose that Xi for i = 1, . . . , n are independent. Then
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(a) g1(X1), . . . , gn(Xn) are independent,

(b) The Xs in any subset are independent,

(c) Var
(∑

aiXi

)
=
∑

a2
i Var(Xi), and

(d) if the Xs are iid with variance σ2, then Var
(∑

aiXi

)
= σ2

∑
a2

i .

5.11 Conditional Distributions

1. Definition: If fX,Y (x, y) is a joint pdf, then the pdf of Y , conditional on X = x
is

fY |X(y|x) def
=
fX,Y (x, y)

fX(x)

provided that fX(x) > 0.

2. Example: Suppose that X and Y have joint distribution

fX,Y (x, y) = 8xy for 0 < x < y < 1.

Then,

fX(x) =

∫ 1

x

fX,Y (x, y)dy = 4x(1 − x2), 0 < x < 1;

E(Xr) =

∫ 1

0

4x(1 − x2)xrdx =
8

(r + 2)(r + 4)
;

fY (y) = 4y3, 0 < y < 1;

E(Y r) =

∫ 1

0

4y3yrdy =
4

r + 4

fX|Y (x|y) =
8xy

4y3
=

2x

y2
, 0 < x < y; and

fY |X(y|x) =
8xy

4x(1 − x2)
=

2y

1 − x2
, x < y < 1.

Furthermore,

E(Xr|Y = y) =

∫ y

0

xr 2x

y2
dx =

2yr

r + 2
and

E(Y r|X = x) =

∫ 1

x

yr 2y

1 − x2
dy =

2(1 − xr+2)

(r + 2)(1 − x2)
.

3. Regression Function: Let (X, Y ) be a pair of random variables with joint pdf
fX,Y (x, y). Consider the problem of predicting Y after observing X = x.
Denote the predictor as ŷ(x). The best predictor is defined as the function

Ŷ (X) that minimizes

SSE = E
[
Y − Ŷ (X)

]2
=

∫ ∞

−∞

∫ ∞

−∞

[y − ŷ(x)]2 fX,Y (x, y)dydx.
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(a) Result: The best predictor is ŷ(x) = E(Y |X = x).

Proof: Write fX,Y (x, y) as fY |X(y|x)fX(x). Accordingly,

SSE =

∫ ∞

−∞

{∫ ∞

−∞

[y − ŷ(x)]2 fY,|X(y, x)dy

}
fX(x)dx.

To minimize SSE, minimize the quantity in { } for each value of x. Note
that ŷ(x) is a constant with respect to the conditional distribution of Y
given X = x. By the parallel axis theorem, the quantity in { } is
minimized by ŷ(x) = E(Y |X = x).

(b) Example: Suppose that X and Y have joint distribution

fX,Y (x, y) = 8xy for 0 < x < y < 1.

Then,

fY |X(y|x) =
8xy

4x(1 − x2)
=

2y

1 − x2
, x < y < 1 and

ŷ(x) = E(Y |X = x) =

∫ 1

x

y
2y

1 − x2
dy =

2(1 − x3)

3(1 − x2)
.

(c) Example; Suppose that (Y,X) has a bivariate normal distribution with
moments E(Y ) = µY , E(X) = µX , Var(X) = σ2

X , Var(Y ) = σ2
Y , and

Cov(X, Y ) = ρX,Y σXσY . Then it can be shown (we will not do so) that
the conditional distribution of Y given X is

(Y |X = x) ∼ N(α + βx, σ2), where

β =
Cov(X, Y )

Var(X)
=
ρX,Y σY

σX
; α = µY − βµX and

σ2 = σ2
Y

(
1 − ρ2

X,Y

)
.

4. Averaging Conditional pdfs and Moments (be able to prove any of these
results)

(a) EX

[
fY |X(y|X)

]
= fY (y).

Proof:

EX

[
fY |X(y|X)

]
=

∫ ∞

−∞

fY |X(y|x)fX(x) dx

=

∫ ∞

−∞

fX,Y (X, Y )

fX(x)
fX(x) dx

=

∫ ∞

−∞

fX,Y (X, Y ) dx = fY (y).
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(b) EX {E[h(Y )|X]} = E[h(Y )]. This is the rule of iterated expectation. A
special case is EX [E(Y |X)] = E(Y ).

Proof:

EX {E[h(Y )|X]} =

∫ ∞

−∞

E[h(Y )|x]fX(x) dx

=

∫ ∞

−∞

∫ ∞

−∞

h(y)fY |X(y|x) dyfX(x) dx

=

∫ ∞

−∞

∫ ∞

−∞

h(y)
fX,Y (x, y)

fX(x)
dyfX(x) dx

=

∫ ∞

−∞

∫ ∞

−∞

h(y)fX,Y (x, y) dy dx =

∫ ∞

−∞

h(y)

∫ ∞

−∞

fX,Y (x, y) dx dy

=

∫ ∞

−∞

h(y)fY (y) dy = E[h(Y )].

(c) Var(Y ) = EX [Var(Y |X)] + Var [E(Y |X)]. That is, the variance of Y is
equal to the expectation of the conditional variance plus the variance of
the conditional expectation.

Proof:

Var(Y ) = E(Y 2) − [E(Y )]2

= EX

[
E(Y 2|X)

]
− {EX [E(Y |X)]}2

by the rule of iterated expectation

= EX

{
Var(Y |X) + [E(Y |X)]2

}
− {EX [E(Y |X)]}2

because Var(Y |X) = E(Y 2|X) − [E(Y |X)]2

= EX [Var(Y |X)] + EX [E(Y |X)]2 − {EX [E(Y |X)]}2

= EX [Var(Y |X)] + Var [E(Y |X)]

because Var[E(Y |X)] = EX [E(Y |X)]2 − {EX [E(Y |X)]}2 .

5. Example: Suppose that X and Y have joint distribution

fX,Y (x, y) =
3y2

x3
for 0 < y < x < 1.

Then,

fY (y) =

∫ 1

y

3y2

x3
dx =

3

2
(1 − y2), for 0 < y < 1;

E(Y r) =

∫ 1

0

3

2
(1 − y2)yrdy =

3

(r + 1)(r + 3)
;

=⇒ E(Y ) =
3

8
and Var(Y ) =

19

320
;

fX(x) =

∫ x

0

3y2

x2
dy = 1, for 0 < x < 1;
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fY |X(y|x) =
3y2

x3
, for 0 < y < x < 1;

E(Y r|X = x) =

∫ x

0

3y2

x3
yrdy =

3xr

3 + r

=⇒ E(Y |X = x) =
3x

4
and

Var(Y |X = x) =
3x2

80
;

Var [E(Y |X)] = Var

(
3X

4

)
=

9

16
× 1

12
=

3

64
;

E [Var(Y |X)] = E

(
3X2

80

)
=

1

80
;

19

320
=

3

64
+

1

80
.

5.12 Moment Generating Functions

1. Definition: If X is a continuous random variable, then the mgf of X is

ψX(t) = E
(
etX
)

=

∫ ∞

−∞

etxfX(x)dx,

provided that the expectation exists for t in a neighborhood of 0. If X is
discrete, then replace integration by summation. If all of the moments of X do
not exist, then the mgf will not exist. Note that the mgf is related to the pgf
by

ψX(t) = ηX(et)

whenever ηX(t) exists for t in a neighborhood of 1. Also note that if ψX(t) is a
mgf, then ψX(0) = 1.

2. Example: Exponential Distribution. If fX(x) = λe−λxI(0,∞)(x), then

ψX(t) =

∫ ∞

0

etxλe−λxdx

=
λ

λ− t

∫ ∞

0

(λ− t)e−(λ−t)xdx

=
λ

λ∗

∫ ∞

0

λ∗e−λ∗xdx, where λ∗ = λ− t,

=
λ

λ∗
=

λ

λ− t
provided that λ > t.

3. Example: Geometric Distribution. If X ∼ Geom(p), then

ψX(t) =

∞∑

x=1

etx(1 − p)x−1p = pet

∞∑

x=1

(1 − p)x−1et(x−1)
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= pet

∞∑

x=0

[
(1 − p)et

]x
=

pet

1 − (1 − p)et

provided that t < − ln(1 − p).

4. MGF of a linear function: If ψX(t) exists, then

ψa+bX(t) = E
[
et(a+bX)

]
= eatψX(tb).

For example, if Z = (X − µX)/σX , then

ψZ(t) = e−tµX/σXψX(t/σX).

5. Independent Random Variables: If Xi for i = 1, . . . , n are independent, ψXi
(t)

exists for each i, and S =
∑
Xi, then

ψS(t) = E
(
et

P
Xi
)

= E

[
n∏

i=1

etXi

]
=

n∏

i=1

ψXi
(t).

If the Xs are iid random variables, then

ψS(t) = [ψX(t)]n .

6. Result: Moment generating functions are unique. Each distribution has a
unique moment generating function and each moment generating function
corresponds to exactly one distribution. Accordingly, if the moment
generating function exists, then it uniquely determines the distribution. For
example, if the mgf of Y is

ψY (t) =
et

2 − et
=

1
2
et

1 − 1
2
et
,

then Y ∼ Geom(0.5).

7. Computing Moments. Consider the derivative of ψX(t) with respect to t
evaluated at t = 0:

d

dt
ψX(t)

∣∣∣∣
t=0

=

∫ ∞

−∞

d

dt
etx

∣∣∣∣
t=0

fX(x)dx

=

∫ ∞

−∞

xfX(x)dx = E(X).

Similarly, higher order moments can be found by taking higher order
derivatives:

E(Xr) =
dr

(dt)r
ψX(t)

∣∣∣∣
t=0

.
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Alternatively, expand etx around t = 0 to obtain

etx =

∞∑

r=0

(tx)r

r!
.

Therefore

ψX(t) = E
(
etX
)

= E

[
∞∑

r=0

(tX)r

r!

]

=

∞∑

r=0

E(Xr)
tr

r!
.

Accordingly, E(Xr) is the coefficient of tr/r! in the expansion of the mgf.

8. Example: Suppose that X ∼ Geom(p). Then the moments of X are

E(Xr) =
dr

(dt)r
ψX(t)

∣∣∣∣
t=0

=
dr

(dt)r

[
pet

1 − (1 − p)et

] ∣∣∣∣
t=0

.

Specifically,

d

dt
ψX(t) =

d

dt

[
pet

1 − (1 − p)et

]
=

ψX(t) +
1 − p

p
ψX(t)2 and

d2

(dt)2
ψX(t) =

d

dt

[
ψX(t) +

1 − p

p
ψX(t)2

]
=

ψX(t) +
1 − p

p
ψX(t)2 +

1 − p

p
2ψX(t)

[
ψX(t) +

1 − p

p
ψX(t)2

]
.

Therefore,

E(X) = 1 +
1 − p

p
=

1

p
;

E(X2) = 1 +
1 − p

p
+

1 − p

p
2

[
1 +

1 − p

p

]
=

2 − p

p2
and

Var(X) =
2 − p

p2
− 1

p2
=

1 − p

p2
.

9. Example: Suppose Y ∼ Unif(a, b). Use the mgf to find the central moments
E[(Y − µY )r] = E[(Y − a+b

2
)r]. Solution:

ψY (t) =
1

b− a

∫ b

a

etydy =
etb − eta

t(b− a)

ψY −µY
(t) = e−t(a+b)/2ψY (t)
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=
e−t(a+b)/2

[
etb − eta

]

t(b− a)

=

(
2

t(b− a)

)
e

t
2
(b−a) − e−

t
2
(b−a)

2

=

(
2

t(b− a)

)
sinh

(
t(b− a)

2

)

=
2

t(b− a)

∞∑

i=0

(
t(b− a)

2

)2i+1
1

(2i + 1)!

=

∞∑

i=0

(
t(b− a)

2

)2i
1

(2i+ 1)!
=

∞∑

i=0

(
t2i

(2i)!

)
(b− a)2i

22i(2i+ 1)
.

Therefore, the odd moments are zero, and

E(Y − µY )2i =
(b− a)2i

4i(2i+ 1)
.

For example, E(Y − µY )2 = (b− a)2/12 and E(Y − µY )4 = (b− a)4/80.



Chapter 6

FAMILIES OF CONTINUOUS
DISTRIBUTIONS

6.1 Normal Distributions

1. PDF and cdf of the Standard Normal Distribution:

fZ(z) =
e−z2/2

√
2π

I(−∞,∞)(z) =
e−z2/2

√
2π

and

FZ(z) = P (Z ≤ z) = Φ(z) =

∫ z

−∞

fZ(u) du

2. Result:

∫ ∞

−∞

e−x2/2

√
2π

dx = 1.

Proof: To verify that fZ(z) integrates to one, it is sufficient to show that
∫ ∞

−∞

e−x2/2 dx =
√

2π.

Let

K =

∫ ∞

−∞

e−x2/2 dx.

Then

K2 =

(∫ ∞

−∞

e−u2/2 du

)2

=

(∫ ∞

−∞

e−u2
1/2 du1

)(∫ ∞

−∞

e−u2
2/2 du2

)

=

∫ ∞

−∞

∫ ∞

−∞

e−
1
2
(u2

1+u2
2) du1 du2.

Now transform to polar coordinates:

u1 = r sin θ; u2 = r cos θ and

41
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K2 =

∫ 2π

0

∫ ∞

0

e−
1
2
(r2)r dr dθ

=

∫ 2π

0

[
−e− 1

2
(r2)

∣∣∣∣∣

∞

0

]
dθ

=

∫ 2π

0

1 dθ = 2π.

Therefore K =
√

2π and fZ(z) integrates to one.

3. Other Normal Distributions: Transform from Z to X = µ+ σZ, where µ and
σ are constants that satisfy |µ| <∞ and 0 < σ <∞. The inverse
transformation is z = (x− µ)/σ and the Jacobian of the transformation is

|J | =

∣∣∣∣
dz

dx

∣∣∣∣ =
1

σ
.

Accordingly, the pdf of X is

fX(x) = fZ

(
x− µ

σ

)
1

σ
=
e−

1
2σ2 (x−µ)2

√
2πσ2

.

We will use the notation X ∼ N(µ, σ2) to mean that X has a normal
distribution with parameters µ and σ.

4. Completing a square. Let a and b be constants. Then
x2 − 2ax+ b = (x− a)2 − a2 + b for all x.

Proof:

x2 − ax + b = x2 − 2
(a

2

)
x +

(a
2

)2

−
(a

2

)2

+ b

=
[
x−

(a
2

)]2
−
(a

2

)2

+ b.

5. Moment Generating Function: Suppose that X ∼ N(µ, σ2). Then
ψX(t) = eµt+t2σ2/2.

Proof:

ψX(t) = E(etX) =

∫ ∞

−∞

etx e
− 1

2σ2 (x−µ)2

√
2πσ2

dx

=

∫ ∞

−∞

e−
1

2σ2 [−2tσ2x+(x−µ)2]
√

2πσ2
dx.

Now complete the square in the exponent:

−2tσ2x + (x− µ)2 = −2tσ2x + x2 − 2xµ+ µ2 = x2 − 2x(µ+ tσ2) + µ2



6.1. NORMAL DISTRIBUTIONS 43

=
[
x− (µ+ tσ2)

]2 − (µ+ tσ2)2 + µ2 =
[
x− (µ+ tσ2)

]2 − 2tµσ2 − t2σ4.

Therefore,

ψX(t) = e−
1

2σ2 (−2tµσ2−t2σ4)

∫ ∞

−∞

e−
1

2σ2 [x−(µ+tσ2)]
2

√
2πσ2

dx

= etµ+t2σ2/2

∫ ∞

−∞

e−
1

2σ2 (x−µ∗)2

√
2πσ2

dx where µ∗ = µ+ tσ2

= etµ+t2σ2/2

because the second term is the integral of the pdf of a random variable with
distribution N(µ∗, σ2) and this integral is one.

6. Moments of Normal Distributions

(a) Moments of the standard normal distribution: Let Z be a normal random
variable with µ = 0 and σ = 1. That is, Z ∼ N(0, 1). The moment
generating function of Z is ψZ(t) = et2/2. The Taylor series expansion of
ψZ(t) around t = 0 is

ψZ(t) = et2/2 =
∞∑

i=0

1

i!

(
t2

2

)i

=

∞∑

i=0

(
(2i)!

2ii!

)(
t2i

(2i)!

)
.

Note that all odd powers in the expansion are zero. Accordingly,

E(Zr) =





0 if r is odd

r!

2r/2
(

r
2

)
!

if r is even.

It can be shown by induction that if r is even, then

r!

2r/2
(

r
2

)
!

= (r − 1)(r − 3)(r − 5) · · ·1.

In particular, E(Z) = 0 and Var(Z) = E(Z2) = 1.

(b) Moments of Other Normal Distributions: Suppose that X ∼ N(µ, σ2).
Then X can be written as X = µ+ Zσ, where Z ∼ N(0, 1). To obtain
the moments of X, one may use the moments of Z or one may
differentiate the moment generating function of X. For example, using
the moments of Z, the first two moments of X are

E(X) = E(µ+ σZ) = µ+ σE(Z) = µ and

E(X2) = E
[
(µ+ σZ)2

]
= E(µ2 + 2µσZ + σ2Z2) = µ2 + σ2.
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Note that Var(X) = E(X2) − [E(X)]2 = σ2. The alternative approach is
to use the moment generating function:

E(X) =
d

dt
ψX(t)

∣∣∣∣
t=0

=
d

dt
etµ+t2σ2/2

∣∣∣∣
t=0

= (µ+ tσ2)etµ+t2σ2/2

∣∣∣∣
t=0

= µ and

E(X2) =
d2

dt2
ψX(t)

∣∣∣∣
t=0

=
d

dt
(µ+ tσ2)etµ+t2σ2/2

∣∣∣∣
t=0

= σ2etµ+t2σ2/2 + (µ+ tσ2)2etµ+t2σ2/2

∣∣∣∣
t=0

= µ2 + σ2.

7. Box-Muller method for generating standard normal variables. Let Z1 and Z2

be iid random variables with distributions Zi ∼ N(0, 1). The joint pdf of Z1

and Z2 is

fZ1,Z2(z1, z2) =
e−

1
2
(z2

1+z2
2)

2π
.

Transform to polar coordinates: Z1 = R sin(T ) and Z2 = R cos(T ). The joint
distribution of R and T is

fR,T (r, t) =
re−

1
2
r2

2π
I(0,∞)(r)I(0,2π)(T ) = fR(r) × fT (t) where

fR(r) = re−
1
2
r2

I(0,∞)(r) and fT (t) =
1

2π
I(0,2π)(t).

Factorization of the joint pdf reveals that R T . Their respective cdfs are

FR(r) = 1 − e−
1
2
r2

and FT (t) =
t

2π
.

Let U1 = FR(R) and U2 = FT (T ). Recall that Ui ∼ Unif(0, 1). Solving the cdf
equations for R and T yields

R =
√
−2 ln(1 − U1) and T = 2πU2.

Lastly, express Z1 and Z2 as functions of R and T :

Z1 = R sin(T ) =
√

−2 ln(1 − U1) sin(2πU2) and

Z2 = R cos(T ) =
√

−2 ln(1 − U1) cos(2πU2).

Note that U1 and 1− U1 have the same distributions. Therefore Z1 and Z2 can
be generated from U1 and U2 by

Z1 =
√

−2 ln(U1) sin(2πU2) and Z2 =
√

−2 ln(U1) cos(2πU2).

8. Linear Functions of Normal Random Variables: Suppose that X and Y are
independently distributed random variables with distributions X ∼ N(µX , σ

2
X)

and Y ∼ N(µY , σ
2
Y ).
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(a) The distribution of aX + b is N(aµX + b, a2σ2
X).

Proof: The moment generating function of aX + b is

ψaX+b(t) = E(et(aX+b)) = etbE(etaX) = etbψX(ta)

= etbetaµ+t2a2σ2/2 = et(aµ+b)+t2(aσ)2/2

and this is the moment generating function of a random variable with
distribution N(aµ+ b, a2σ2).

(b) Application: Suppose that X ∼ N(µ, σ2). Let Z = (X − µ)/σ. Note,
Z = aX + b, where a = 1/σ and b = −µ/σ. Accordingly, Z ∼ N(0, 1).

(c) The distribution of aX + bY is N(aµX + bµY , a
2σ2

X + b2σ2
Y ).

Proof: The moment generating function of aX + bY is

ψaX+bY (t) = E(et(aX+bY )) = E(etaX)E(etbY ) by independence

= ψX(ta)ψY (tb) = etaµX +t2a2σ2
X/2etbµY +t2b2σ2

Y /2

= et(aµX +bµY )+t2(a2σ2
X+b2σ2

Y )/2.

and this is the moment generating function of a random variable with
distribution N(aµX + bµY , a

2σ2
X + b2σ2

Y ).

(d) The above result is readily generalized. Suppose that Xi for i = 1, . . . , n
are independently distributed as Xi ∼ N(µi, σ

2
i ). If T =

∑n
i=1 aiXi, then

T ∼ N(µT , σ
2
T ), where µT =

∑n
i=1 aiµi and σ2

T =
∑n

i=1 a
2
iσ

2
i .

9. Probabilities and Percentiles

(a) If X ∼ N(µX , σ
2
X), then the probability of an interval is

P (a ≤ X ≤ b) = P

[
a− µX

σX

≤ Z ≤ b− µX

σX

]

= Φ

(
b− µX

σX

)
− Φ

(
a− µX

σX

)
.

(b) If X ∼ N(µX , σ
2
X), then the 100pth percentile of X is

xp = µX + σXzp,

where zp is the 100pth percentile of the standard normal distribution.

Proof:

P (X ≤ µX + σXzp) = P

(
X − µX

σX
≤ zp

)
= P (Z ≤ zp) = p

because Z = (X − µX)/σX ∼ N(0, 1).

10. Log Normal Distribution
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(a) Definition: If ln(X) ∼ N(µ, σ2), then X is said to have a log normal
distribution. That is

ln(X) ∼ N(µ, σ2) ⇐⇒ X ∼ LogN(µ, σ2).

Note: µ and σ2 are the mean and variance of ln(X), not of X.

(b) PDF: Let Y = ln(X), and assume that Y ∼ N(µ, σ2). Note that x = g(y)
and y = g−1(x), where g(y) = ey and g−1(x) = ln(x). The Jacobian of the
transformation is

|J | =

∣∣∣∣
d

dx
y

∣∣∣∣ =
∣∣∣∣
d

dx
ln(x)

∣∣∣∣ =
1

x
.

Accordingly, the pdf of X is

fX(x) = fY

[
g−1(x)

] 1

x
=
e−

1
2σ2 [ln(x)−µ]2

xσ
√

2π
I(0,∞)(x).

(c) CDF: If Y ∼ LogN(µ, σ2), then

P (Y ≤ y) = P [ln(Y ) ≤ ln(y)] = Φ

(
ln(y) − µ

σ

)
.

(d) Moments of a log normal random variable. Suppose that

X ∼ LogN(µ, σ2). Then E(Xr) = eµr+r2σ2/2.

Proof: Let Y = ln(X). Then X = eY and Y ∼ N(µ, σ2) and

E(Xr) = E
(
erY
)

= erµ+r2σ2/2,

where the result is obtained by using the mgf of a normal random
variable. To obtain the mean and variance, set r to 1 and 2:

E(X) = eµ+σ2/2 and Var(X) = e2µ+2σ2 − e2µ+σ2

= e2µ+σ2
[
eσ2 − 1

]
.

(e) Displays of various log normal distributions. The figure below displays
four log normal distributions. The parameters of the distribution are
summarized in the following table:

µ = σ2 = τ = δ = θ =

Plot E[ln(X)] Var[ln(X)] E(X)
√

Var(X) τ/δ
1 3.2976 4.6151 100 1000 0.1
2 3.8005 1.6094 100 200 0.5
3 4.2586 0.6931 100 100 1
4 4.5856 0.0392 100 20 5

Note that each distribution has mean equal to 100. The distributions
differ in terms of θ, which is the coefficient of variation.
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If the coefficient of variation is small, then the log normal distribution
resembles an exponential distribution, As the coefficient of variation
increases, the log normal distribution converges to a normal distribution.

6.2 Exponential Distributions

1. PDF and cdf

fX(x) = λe−λxI[0,∞)(x) where λ is a positive parameter, and

FX(x) = 1 − e−λx

provided that x ≥ 0. We will use the notation X ∼ Expon(λ) to mean that X
has an exponential distribution with parameter λ. Note that the 100pth

percentile is xp = − ln(1 − p)/λ. The median, for example, is x0.5 = ln(2)/λ.

2. Moment Generating Function. If X ∼ Expon(λ), then ψX(t) = λ/(λ− t) for
t < λ.

Proof:

ψX(t) = E(etX) =

∫ ∞

0

etxλe−λx dx

=

∫ ∞

0

λe(λ−t)x dx =
λ

λ− t

∫ ∞

0

(λ− t)e(λ−t)x dx =
λ

λ− t

because the last integral is the integral of the pdf of a random variable with
distribution Expon(λ− t), provided that λ− t > 0.
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3. Moments: If X ∼ Expon(λ), then E(Xr) = r!/λr.

Proof:

ψX(t) =
λ

λ− t
=

1

1 − t/λ
=

∞∑

r=0

(
t

λ

)r

=

∞∑

r=0

(
tr

r!

)(
r!

λr

)

provided that −λ < t < λ. Note that E(X) = 1/λ, E(X2) = 2/λ2 and
Var(X) = 1/λ2.

4. Displays of exponential distributions. Below are plots of four exponential
distributions. Note that the shapes of the distributions are identical.
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5. Memoryless Property: Suppose that X ∼ Expon(λ). The random variable can
be thought of as the waiting time for an event to occur. Given that an event
has not occurred in the interval [0, w), find the probability that the additional
waiting time is at least t. That is, find P (X > t+ w|X > w). Note: P (X > t)
is sometimes called the reliability function. It is denoted as R(t) and is related
to FX(t) by

R(t) = P (X > t) = 1 − P (X ≤ t) = 1 − FX(t).

The reliability function represents the probability that the lifetime of a
product (i.e., waiting for failure) is at least t units. For the exponential
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distribution, the reliability function is R(t) = e−λt. We are interested in the
conditional reliability function R(t+ w|X > w). Solution:

R(t+ w|X > w) = P (X > t+ w|X > w) =
P (X > t + w)

P (X > w)

=
e−λ(t+w)

e−λw
= e−λt.

Also,

R(t + w|X > w) = 1 − FX(t + w|X > w) =⇒ FX(t+ w|X > w) = 1 − e−λt.

That is, no matter how long one has been waiting, the conditional distribution
of the remaining life time is still Expon(λ). It is as though the distribution
does not remember that we have already been waiting w time units.

6. Poison Inter-arrival Times: Suppose that events occur according to a Poisson
process with rate parameter λ. Assume that the process begins at time 0. Let
T1 be the arrival time of the first event and let Tr be the time interval from
the (r − 1)st arrival to the rth arrival. That is, T1, . . . , Tn are inter-arrival
times. Then Ti for i = 1, . . . , n are iid Expon(λ).

Proof: Consider the joint pdf or T1, T2, . . . , Tn:

fT1,T2,...,Tn(t1, t2, . . . , tn) =

= fT1(t1) × fT2|T1(t2|t1) × fT3|T1,T2(t3|t1, t2)
× · · · × fTn|T1,...,Tn−1

(tn|t1, . . . , tn−1)

by the multiplication rule. To obtain the first term, first find the cdf of T1:

FT1(t1) = P (T1 ≤ t1) = P [one or more events in (0, t1)]

= 1 − P [no events in (0, t1)] = 1 − e−λt1(λt1)
0

0!
= 1 − e−λt1 .

Differentiating the cdf yields

fT1(t1) =
d

dt1
(1 − e−λt1) = λe−λt1I(0,∞)(t1).

The second term is the conditional pdf of T2 given T1 = t1. Recall that in a
Poisson process, events in non-overlapping intervals are independent.
Therefore,

fT2|T1
(t2|t1) = fT2(t2) = λe−λt2 .

Each of the remaining conditional pdfs also is just an exponential pdf.
Therefore,

fT1,T2,...,Tn(t1, t2, . . . , tn) =

n∏

i=1

λe−λtiI[0,∞)(ti).

This joint pdf is the product of n marginal exponential pdfs. Therefore, the
inter-arrival times are iid exponential random variables. That is,
Ti ∼ iid Expon(λ).
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6.3 Gamma Distributions

1. Erlang Distributions:

(a) Consider a Poisson process with rate parameter λ. Assume that the
process begins at time 0. Let Y be the time of the rth arrival. Using the
differential method, the pdf of Y can be obtained as follows:

P (y < Y < y + dy) ≈ P (r − 1 arrivals before time y)

× P [one arrival in (y, y + dy)]

=
e−λy(λy)r−1

(r − 1)!
× λdy.

Accordingly,

fY (y) =
e−λyλryr−1

(r − 1)!
I[0,∞)(y).

The above pdf is called the Erlang pdf.

(b) Note that Y is the sum of r iid Expon(λ) random variables (see page 49
of these notes). Accordingly, E(Y ) = r/λ and Var(Y ) = r/λ2.

(c) CDF of an Erlang random variable: FY (y) = 1−P (Y > y) and P (Y > y)
is the probability that fewer than r events occur in [0, y). Accordingly,

FY (y) = 1 − P (Y > y) = 1 −
r−1∑

i=0

e−λy(λy)i

i!
.

2. Gamma Function

(a) Definition: Γ(α) =

∫ ∞

0

uα−1e−u du, where α > 0.

(b) Alternative expression: Let z =
√

2u so that u = z2/2; du = z dz; and

Γ(α) =

∫ ∞

0

z2α−1e−z2/2

2α−1 dz.

(c) Properties of Γ(α)

i. Γ(1) = 1.

Proof:

Γ(1) =

∫ ∞

0

e−wdw = −e−w

∣∣∣∣
∞

0

= −0 + 1 = 1.

ii. Γ(α + 1) = αΓ(α).

Proof:

Γ(α+ 1) =

∫ ∞

0

wαe−wdw.
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Let u = wα, let dv = e−wdw and use integration by parts to obtain
du = αwα−1, v = −e−w and

Γ(α + 1) = −wαe−w

∣∣∣∣
∞

0

+ α

∫ ∞

0

wα−1e−wdw

= 0 + αΓ(α).

iii. If n is a positive integer, then Γ(n) = (n− 1)!.

Proof: Γ(n) = (n− 1)Γ(n− 1) = (n− 1)(n− 2)Γ(n− 2) etc.

iv. Γ(1
2
) =

√
π.

Proof:

Γ

(
1

2

)
=

∫ ∞

0

e−z2/2

2−
1
2

dz =

∫ ∞

−∞

e−z2/2

√
2
dz =

√
π

because the integral of the standard normal distribution is one.

3. Gamma Distribution

(a) PDF and cdf: If Y ∼ Gam(α, λ), then

fY (y) =
yα−1λαe−λy

Γ(α)
I(0,∞)(y) and FY (y) =

∫ y

0

uα−1λαe−λu

Γ(α)
du.

(b) Note: α is called the shape parameter and λ is called the scale parameter.

(c) Moment Generating Function: If Y ∼ Gam(α, λ), then

ψY (t) =

∫ ∞

0

ety y
α−1λαe−λy

Γ(α)
dy

=

∫ ∞

0

yα−1λαe−(λ−t)y

Γ(α)
dy

=
λα

(λ− t)α

∫ ∞

0

yα−1(λ− t)αe−(λ−t)y

Γ(α)
dy

=
λα

(λ− t)α

because the last integral is the integral of a random variable with
distribution Gam(α, λ− t) provided that λ− t > 0.

(d) Moments: If Y ∼ Gam(α, λ), then

E(Y ) =
d

dt
ψY (t)

∣∣∣∣
t=0

=
λαα

(λ− t)α+1

∣∣∣∣
t=0

=
α

λ
;

E(Y 2) =
d2

(dt)2
ψY (t)

∣∣∣∣
t=0

=
λαα(α + 1)

(λ− t)α+2

∣∣∣∣
t=0

=
α(α + 1)

λ2
; and

Var(Y ) = E(Y 2) − [E(Y )]2 =
α(α + 1)

λ2
− α2

λ2
=

α

λ2
.
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(e) General expression for moments (including fractional moments). If
Y ∼ Gam(α, λ), then

E(Y r) =
Γ(α + r)

λr Γ(α)
provided that α + r > 0.

Proof:

E(Y r) =

∫ ∞

0

yryα−1λαe−λy

Γ(α)
dy =

∫ ∞

0

yα+r−1λαe−λy

Γ(α)
dy

=
Γ(α + r)

λrΓ(α)

∫ ∞

0

yα+r−1λα+re−λy

Γ(α+ r)
dy =

Γ(α + r)

λrΓ(α)

because the last integral is the integral of a random variable with
distribution Gam(α+ r, λ), provided that α + r > 0.

(f) Distribution of the sum of iid exponential random variables. Suppose
that Y1, Y2, . . . , Yk are iid Expon(λ) random variables. Then
T =

∑k
i=1 Yi ∼ Gam(k, λ).

Proof: ψYi
(t) = λ/(λ− t) =⇒ ψT (t) = λk/(λ− t)k.

(g) Note that the Erlang distribution is a gamma distribution with shape
parameter α equal to an integer.

6.4 Chi Squared Distributions

1. Definition: Let Zi for i = 1, . . . k be iid N(0, 1) random variables. Then
Y =

∑k
i=1 Z

2
i is said to have a χ2 distribution with k degrees of freedom. That

is, Y ∼ χ2
k.

2. MGF: ψY (t) = (1 − 2t)−
k
2 for t < 0.5.

Proof: First find the mgf of Z2
i :

ψZ2
i
(t) = E(etZ2

) =

∫ ∞

−∞

etz2 e−
1
2
z2

√
2π

dz

=

∫ ∞

−∞

e
− 1

2(1−2t)−1 z2

√
2π

dz = (1 − 2t)−
1
2

∫ ∞

−∞

e
− 1

2(1−2t)−1 z2

(1 − 2t)−
1
2

√
2π
dz

= (1 − 2t)−
1
2

because the last integral is the integral of a N[0, (1 − 2t)−1] random variable.

It follows that the mgf of Y is (1 − 2t)−
k
2 . Note that this is the mgf of a

Gamma random variable with parameters λ = 0.5 and α = k/2. Accordingly,

Y ∼ χ2
k ⇐⇒ Y ∼ Gamma

(
k

2
,
1

2

)
and



6.5. DISTRIBUTIONS FOR RELIABILITY 53

fY (y) =
y

k
2
−1e−

1
2
y

Γ

(
k

2

)
2

k
2

I(0,∞)(y).

3. Properties of χ2 Random variables

(a) If Y ∼ χ2
k, then E(Y r) =

2rΓ(k/2 + r)

Γ(k/2)
provided that k/2 + r > 0.

Proof: Use the moment result for Gamma random variables.

(b) Using Γ(α+ 1) = αΓ(α), it is easy to show that E(Y ) = k,
E(Y 2) = k(k + 2), and Var(X) = 2k.

(c) Y ∼̇N(k, 2k) for large k. This is an application of the central limit
theorem. A better approximation (again for large k) is√

2Y −
√

2k − 1 ∼̇N(0, 1).

(d) If Y1, Y2, . . . , Yn are independently distributed as Yi ∼ χ2
ki

, then∑n
i=1 Yi ∼ χ2

k, where k =
∑n

i=1 ki.

Proof: use the mgf.

(e) If X ∼ χ2
k, X + Y ∼ χ2

n, and X Y , then Y ∼ χ2
n−k.

Proof: See page 248 in the text. Note that by independence
ψX+Y (t) = ψX(t)ψY (t).

6.5 Distributions for Reliability

1. Definition: Suppose that L is a nonnegative continuous rv. In particular,
suppose that L is the lifetime (time to failure) of a component. The
reliability function is the probability that the lifetime exceeds x. That is,

Reliability Function of L = RL(x)
def
= P (L > x) = 1 − FL(x).

2. Result: If L is a nonnegative continuous rv whose expectation exists, then

E(L) =

∫ ∞

0

RL(x) dx =

∫ ∞

0

[1 − FL(x)] dx.

Proof: Use integration by parts with u = RL(x) =⇒ du = −f(x) and
dv = dx =⇒ v = x. Making these substitutions,

∫ ∞

0

RL(u) du =

∫ ∞

0

u dv = uv

∣∣∣∣
∞

0

−
∫ ∞

0

v du

= x [1 − FL(x)]

∣∣∣∣
∞

0

+

∫ ∞

0

xfL(x) dx

=

∫ ∞

0

xfL(x) dx = E(L)

provided that lim
x→∞

x [1 − FL(x)] = 0.
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3. Definition: the hazard function is the instantaneous rate of failure at time x,
given that the component lifetime is at least x. That is,

Hazard Function of L = hL(x)
def
= lim

dx→0

P (x < L < x + dx|L > x)

dx

= lim
dx→0

[
FL(x+ dx) − FL(x)

dx

]
1

RL(x)
=

fL(x)

RL(x)
.

4. Result:

hL(x) = − d

dx
ln[RL(x)] = − 1

RL(x)
× d

dx
RL(x)

= − 1

RL(x)
×−fL(x) =

fL(x)

RL(x)
.

5. Result: If RL(0) = 1, then

RL(x) = exp

{
−
∫ x

0

hL(u) du

}
.

Proof:

hL(x) = − d

dx
{ln [RL(x)] − ln [RL(0)]}

=⇒ −hL(x) =
d

dx

{
ln [RL(u)]

∣∣∣∣
x

0

}
=⇒ −

∫ x

0

hL(u) du = ln [RL(x)]

=⇒ exp

{
−
∫ x

0

hL(u) du

}
= RL(x).

6. Result: the hazard function is constant if and only if time to failure has an
exponential distribution. Proof: First, suppose that time to failure has an
exponential distribution. Then,

fL(x) = λe−λxI(0,∞)(x) =⇒ RL(x) = e−λx =⇒ hL(x) =
λe−λx

e−λx
= λ.

Second, suppose that the hazard function is a constant, λ. Then,

hL(x) = λ =⇒ RL(x) = exp

{
−
∫ x

0

λ du

}

= e−λx =⇒ fL(x) =
d

dx

[
1 − e−λx

]
= λe−λx.

7. Weibull Distribution: Increasing hazard function. The hazard function for the
Weibull distribution is

hL(x) =
αxα−1

βα ,
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where α and β are positive constants. The corresponding reliability function is

RL(x) = exp

{
−
∫ x

0

hL(u) du

}
= exp

{
−
(
x

β

)α}
,

and the pdf is

fL(x) =
d

dx
FL(x) =

αxα−1

βα
exp

{
−
(
x

β

)α}
I(0,∞)(x).

8. Gompertz Distribution: exponential hazzard function. The hazzard function
for the Gompertz distribution is

hL(x) = αeβx,

where α and β are positive constants. The corresponding reliability function is

RL(x) = exp

{
−α
β

[
eβx − 1

]}
,

and the pdf is

fL(x) =
d

dx
FL(x) = αeβx exp

{
−α
β

[
eβx − 1

]}
I(0,∞)(x).

9. Series Combinations: If a system fails whenever any single component fails,
then the components are said to be in series. The time to failure of the system
is the minimum time to failure of the components. If the failure times of the
components are statistically independent, then the reliability function of the
system is

R(x) = P (system life > x) = P (all components survive to x)

=
∏

Ri(x),

where Ri(x) is the reliability function of the ith component.

10. Parallel Combinations: If a system fails only if all components fail, then the
components are said to be in parallel. The time to failure of the system is the
maximum time to failure of the components. If the failure times of the
components are statistically independent, then the reliability function of the
system is

R(x) = P (all components fail by time x) = 1 − P (no component fails by time x)

= 1 −
∏

Fi(x) = 1 −
∏

[1 − Ri(x)] ,

where Fi(x) is the cdf of the ith component.
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6.6 t, F, and Beta Distributions

1. t distributions: Let Z and X be independently distributed as Z ∼ N(0, 1) and
X ∼ χ2

k. Then

T =
Z√
X/k

has a central t distribution with k degrees of freedom. The pdf is

fT (t) =

Γ

(
k + 1

2

)

Γ

(
k

2

)√
kπ

(
1 +

t2

k

)(k+1)/2
.

• If k = 1, then the pdf of T is

fT (t) =
1

π(1 + t2)
.

which is the pdf of a standard Cauchy random variable.

• Moments of a t random variable. Suppose that T ∼ tk. Then

E(T r) = E

(
kr/2Zr

Xr/2

)
= kr/2E(Zr)E(X−r/2), where

Z ∼ N(0, 1), X ∼ χ2
k, and Z X.

Recall that odd moments of Z are zero. Even moments of Z and
moments of X are

E(Z2i) =
(2i)!

i!2i and E(Xa) =
2aΓ(k/2 + a)

Γ(k/2)

provided that a < k/2. Therefore, if r is a non-negative integer, then

E(T r) =





does not exist if r > k;

0 if r is odd and r < k;

kr/2

r! Γ

(
k − r

2

)

(r
2

)
! 2r Γ

(
k

2

) if r is even and r < k.

Using the above expression, it is easy to show that E(T ) = 0 if k > 1 and
that Var(T ) = k/(k − 2) if k > 2.

2. F Distributions: Let U1 and U2 be independent χ2 random variables with
degrees of freedom k1 and k2, respectively. Then

Y =
U1/k1

U2/k2
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has a central F distribution with k1 and k2 degrees of freedom. That is,
Y ∼ Fk1,k2 . The pdf is

fY (y) =

(
k1

k2

)k1/2 Γ

(
k1 + k2

2

)
y(k1−2)/2

Γ

(
k1

2

)
Γ

(
k2

2

)(
1 +

yk1

k2

)(k1+k2)/2
I(0,∞)(y).

• If T ∼ tk, then T 2 ∼ F1,k.

• Moments of an F random variable. Suppose that Y ∼ Fk1,k2. Then

E(Y r) = E

(
(k2U1)

r

(k1U2)
r

)
=

(
k2

k1

)r

E(U r
1 )E(U−r

2 ), where

U1 ∼ χ2
k1
, U2 ∼ χ2

k2
, and U1 U2.

Using the general expression for the moments of a χ2 random variable, it
can be shown that for any real valued r,

E(Y r) =





does not exist if r > k2/2;

(
k2

k1

)r Γ

(
k1

2
+ r

)
Γ

(
k2

2
− r

)

Γ

(
k1

2

)
Γ

(
k2

2

) if r < k2/2.

Using the above expression, it is easy to show that

E(Y ) =
k2

k2 − 2
if k > 2 and that Var(Y ) =

2k2
2(k1 + k2 − 2)

k1(k2 − 2)2(k2 − 4)
if k2 > 4.

3. Beta Distributions: Let U1 and U2 be independent χ2 random variables with
degrees of freedom k1 and k2, respectively. Then

Y =
U1

U1 + U2

has a beta distribution with parameters k1/2 and k2/2. That is,
Y ∼ Beta

(
k1

2
, k2

2

)
. More generally, if U1 ∼ Gam(α1), U2 ∼ Gam(α2), and

U1 U2, then

Y =
U1

U1 + U2
∼ Beta(α1, α2).

If Y ∼ Beta(α1, α2), then the pdf of Y is

fY (y) =
yα1−1(1 − y)α2−1

β(α1, α2)
I(0,1)(y),

where β(α1, α2) is the beta function and is defined as

β(α1, α2) =
Γ(α1)Γ(α2)

Γ(α1 + α2)
.
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• If B ∼ Beta(α1, α2), then

α2B

α1(1 − B)
∼ F2α1,2α2 .

• If B ∼ Beta(α1, α2), where α1 = α2 = 1, then B ∼ Unif(0, 1).

• If X ∼ Beta(α1, α2), then

E(Xr) =
Γ(α1 + r)Γ(α1 + α2)

Γ(α1 + α2 + r)Γ(α1)
provided that α1 + r > 0.

Proof:

E(Xr) =

∫ 1

0

xrxα1−1(1 − x)α−1

β(α1, α2)
dx =

∫ 1

0

xα1+r−1(1 − x)α−1

β(α1, α2)
dx

=
β(α1 + r, α2)

β(α1, α2)

∫ 1

0

xα1+r−1(1 − x)α−1

β(α1 + r, α2)
dx

=
β(α1 + r, α2)

β(α1, α2)
=

Γ(α1 + r)Γ(α1 + α2)

Γ(α1 + α2 + r)Γ(α1)
,

provided that α1 + r > 0, because the last integral is the integral of the
pdf of a random variable with distribution Beta(α1 + r, α2).

• If F ∼ Fk1,k2, then

k1F

k1F + k2
∼ Beta

(
k1

2
,
k2

2

)
.



Chapter 7

ORGANIZING & DESCRIBING
DATA

The topics in this chapter are covered in Stat 216, 217, and 401. Please read this
chapter. With a few exceptions, I will not lecture on these topics. Below is a list of
terms and methods that you should be familiar with.

7.1 Frequency Distributions

1. Contingency (frequency) tables for categorical random variables, cell, marginal
distributions.

2. Bar graph for categorical and for discrete random variables.

7.2 Data on Continuous Variables

1. Stem & Leaf Displays for continuous random variables.

2. Frequency Distributions & Histograms for continuous random variables. Area
should be proportional to frequency regardless of whether bin widths are equal
or not.

3. Scatter Plots for paired continuous random variables.

4. Statistic: A numerical characteristic of the sample. A statistic is a random
variable.

7.3 Order Statistics

1. Order statistics are the ordered sample values. The conventional notation is to
denote the ith order statistic as X(i), where X(1) ≤ X(2) ≤ X(3) ≤ · · · ≤ X(n).

2. Sample median: 50th percentile.

59
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3. Quartiles: Q1 = 25th, Q2 = 50th, and Q3 = 75th percentiles.

4. Interquartile Range: Q3 −Q1.

5. Range: X(n) −X(1).

6. Midrange: (X(n) +X(1))/2.

7. Midhinge: (Q1 +Q3)/2.

8. Five Number Summary: X(1), Q1, Q2, Q3, X(n).

9. Quantiles: For a data set of size n, the quantiles are the order statistics
X(1), . . . , X(n). The quantiles are special cases of percentiles (the book has this
backwards). The ith quantile is the 100pth

i percentile, where
pi = (i− 3/8)/(n+ 1/4). Note, the percentile is defined so that pi ∈ (0, 1) for
all i. For large n, pi ≈ i/n.

10. Q-Q Plots: These are scatter plots of the quantiles from two distributions. If
the distributions are the same, then the scatter plot should show a line of
points at a 45 degree angle. One application is to plot the empirical quantiles
against the quantiles from a theoretical distribution. This is called a
probability plot. Suppose, for example, that it is believed that the data have
been sampled from a distribution having cdf F . Then the probability plot is
obtained by plotting F−1(pi) against X(i) for i = 1, . . . , n.

To visualize whether or not the data could have come from a normal
distribution, for example, the empirical quantiles can be plotted against
normal quantiles, µ+ σΦ−1(pi). For example, problem 7-17 on page 284 gives
the population densities per square mile for each of the 50 states. Below are
Q-Q plots comparing the quantiles of the data to the quantiles of the normal
distribution and to the quantiles of the log normal distribution. The
computations to construct the plots are on the following page. In the table,
the variable ln(y) is labeled as w. The quantiles of the normal distribution
and the log normal distribution are

ȳ + syzpi
and exp {w̄ + swzpi

} ,

respectively, where zpi
= Φ−1(pi) is the 100pth

i percentile of the standard
normal distribution.

The smallest three values correspond to Alaska, Montana, and Wyoming.
Values 46–50 correspond to Maryland, Connecticut, Massachusetts, New
Jersey, and Rhode Island, respectively.
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i y(i) pi zpi
ȳ + syzpi

w̄ + swzpi
exp{w̄ + swzpi

}
1 1 0.012 −2.24 −355.23 0.95 2.58
2 5 0.032 −1.85 −264.99 1.52 4.58
3 5 0.052 −1.62 −213.93 1.85 6.34
4 7 0.072 −1.46 −176.66 2.08 8.03
5 9 0.092 −1.33 −146.62 2.27 9.72
6 9 0.112 −1.22 −121.08 2.44 11.43
...

...
...

...
...

...
...

21 54 0.410 −0.23 104.59 3.87 47.87
22 55 0.430 −0.18 116.19 3.94 51.53
23 62 0.450 −0.13 127.70 4.02 55.43
24 71 0.470 −0.07 139.13 4.09 59.60
25 77 0.490 −0.02 150.51 4.16 64.07
26 81 0.510 0.02 161.89 4.23 68.87
27 87 0.530 0.07 173.27 4.30 74.03
28 92 0.550 0.13 184.70 4.38 79.61
29 94 0.570 0.18 196.21 4.45 85.64
30 95 0.590 0.23 207.81 4.52 92.18

...
...

...
...

...
...

...
46 429 0.908 1.33 459.02 6.12 454.22
47 638 0.928 1.46 489.06 6.31 549.64
48 733 0.948 1.62 526.33 6.55 696.36
49 987 0.968 1.85 577.39 6.87 962.96
50 989 0.988 2.24 667.63 7.44 1707.73

7.4 Data Analysis

1. Random variable versus realization: Let X1, X2, . . . , Xn be a random sample
from some population. Then Xi is a random variable whose distribution
depends on the population at hand. Also, the distribution of X1, X2, . . . , Xn is
exchangeable. We will use lower case letters to denote a realization of the
random sample. That is, x1, x2, . . . , xn is a realization of the random sample.

2. Outlier: An observation that is far from the bulk of the data.

3. Random Sample: A simple random sample is a sample taken from the
population in a manner such that each possible sample of size n has an equal
probability of being selected. Note, this implies that each unit has the same
probability of being selected, but a sample taken such that each unit has the
same probability of being selected is not necessarily a simple random sample.

4. Transformations of X and/or Y are sometimes useful to change a non-linear
relationship into a linear relationship.



7.5. THE SAMPLE MEAN 63

7.5 The Sample Mean

1. X =
1

n

n∑

i=1

Xi is a random variable whereas x̄ =
1

n

n∑

i=1

xi is a realization.

2.
n∑

i=1

(Xi −X) = 0 with probability 1 and
n∑

i=1

(xi − x̄) = 0.

3. If X1, . . . , Xn is a random sample without replacement from a finite
population of size N with mean µ and variance σ2, then

E(X) = µ and Var(X) =
σ2

n

(
1 − (n− 1)

(N − 1)

)
.

4. If X1, . . . , Xn is a random sample with or without replacement from an infinite
population or with replacement from a finite population with mean µ and
variance σ2, then

E(X) = µ and Var(X) =
σ2

n
.

7.6 Measures of Dispersion

1. Sample variance: S2 =
1

n− 1

n∑

i=1

(Xi −X)2 is a random variable whereas

s2 =
1

n− 1

n∑

i=1

(xi − x̄)2 is a realization.

2. If X1, . . . , Xn is a random sample with or without replacement from an infinite
population or with replacement from a finite population with mean µX and
variance σ2

X , then
E(S2

X) = σ2
X .

Proof: First write (Xi −X)2 as

(Xi −X)2 = X2
i − 2XiX +X

2
.

Accordingly,

S2
X =

1

n− 1

[
n∑

i=1

X2
i − nX

2

]
.

Recall that if Y is a random variable with mean µY and variance σ2
Y , then

E(Y 2) = µ2
Y + σ2

Y . In this application, E(X
2
) = µ2

X + σ2
X/n. Accordingly,

E(S2
X) =

1

n− 1

[
n(µ2

X + σ2
X) − n

(
µ2

X +
σ2

X

n

)]
= σ2

X .
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3. Let Y1, . . . , Yn be a sample with sample mean Y and sample variance S2
Y .

Define Xi by Xi = a + bYi for i = 1, . . . , n. Then the sample mean and sample
variance of X1, . . . , Xn, are

X = a+ bY and S2
X = b2S2

Y .

Proof:

X =
1

n

n∑

i=1

Xi =
1

n

n∑

i=1

(a + bYi)

=
1

n

(
na+ b

n∑

i=1

Yi

)
= a+ bY .

Also,

S2
X =

1

n− 1

∑[
Xi −X

]2
=

1

n− 1

∑[
a+ bYi −

(
a+ bY

)]2

=
1

n− 1

∑[
bYi − bY

]2
=

1

n− 1
b2
∑[

Yi − Y
]2

= b2S2
Y .

This result also holds true for realizations y1, y2, . . . , yn.

4. MAD = n−1
∑n

i=1 |Xi −X| or, more commonly, MAD is defined as
MAD = n−1

∑n
i=1 |Xi −M |, where M is the sample median.

5. Result: Let g(a) =
∑n

i=1 |Xi − a|. Then, the minimizer of g(a) with respect to
a is the sample median.

Proof: The strategy is to take the derivative of g(a) with respect to a; set the
derivative to zero; and solve for a. First note that we can ignore any Xi that
equals a because it contributes nothing to g(a). If Xi 6= a, then

d

da
|Xi − a| =

d

da

√
(Xi − a)2

=
1

2

[
(Xi − a)2

]− 1
2 2(Xi − a)(−1) = − Xi − a

|Xi − a|

=

{
−1 Xi > a;

1 Xi < a.

Accordingly,

d

da
g(a) =

n∑

i=1

[
−I(−∞,Xi)(a) + I(Xi,∞)(a)

]

= −#Xs larger than a + #Xs smaller than a.

Setting the derivative to zero implies that the number of Xs smaller than a
must be equal to the number of Xs larger than a. Thus, a must be the sample
median.
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7.7 Correlation

1. Let (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be a random sample of ordered pairs from a
population having means (µX , µY ), variances (σ2

X , σ
2
Y ), and covariance σX,Y .

The sample covariance between X and Y is

SX,Y
def
=

1

n− 1

n∑

i=1

(Xi −X)(Yi − Y ).

2. The equation for SX,Y can be written as

SX,Y =
1

n− 1

[
n∑

i=1

XiYi − nX Y

]
.

Proof: Multiply the X and Y deviations to obtain the following:

SX,Y =
1

n− 1

n∑

i=1

(
XiYi −XiY −XYi +X Y

)

=
1

n− 1

[
n∑

i=1

XiYi − Y
n∑

i=1

Xi −X
n∑

i=1

Yi + nX Y

]

=
1

n− 1

[
n∑

i=1

XiYi − nY X − nXY + nX Y

]

=
1

n− 1

[
n∑

i=1

XiYi − nY X

]
.

3. If the population is infinite or samples are taken with replacement, then
E(SX,Y ) = σX,Y .

Proof: First note that σX,Y = E(XiYi) − µXµY and, by independence,
E(XiYj) = µXµY if i 6= j. Also

X Y =
1

n2

(
n∑

i=1

Xi

)(
n∑

j=1

Yj

)
=

1

n2

n∑

i=1

n∑

j=1

XiYj

=
1

n2

[
n∑

i=1

XiYi +
∑

i6=j

XiYj

]
.

Therefore,

E(SX,Y ) =
1

n− 1
E

[
n∑

i=1

XiYi −
1

n

n∑

i=1

XiYi −
1

n

∑

i6=j

XiYj

]

=
1

n− 1
E

[(
1 − 1

n

) n∑

i=1

XiYi −
1

n

∑

i6=j

XiYj

]
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1

n− 1
[(n− 1)E(XiYi) − (n− 1)E(XiYj)]

= E(XiYi) − E(XiYj) = E(XiYi) − µXµY = σX,Y .

4. Sample Correlation Coefficient:

rX,Y
def
=

SX,Y√
S2

XS
2
Y

.

5. If Ui = a+ bXi and V = c+ dYi for i = 1, . . . , n, then the sample covariance
between U and V is

SU,V = bdSX,Y .

Proof: By the definition of sample covariance

SU,V =
1

n− 1

n∑

i=1

(
Ui − U

) (
Vi − V

)

=
1

n− 1

n∑

i=1

[
a+ bXi −

(
a + bX

)] [
c+ dYi −

(
c+ dY

)]

=
1

n− 1

n∑

i=1

(
bXi − bX

) (
dYi − dY

)

=
1

n− 1
bd

n∑

i=1

(
Xi −X

) (
Yi − Y

)
= bdSX,Y .

6. If Ui = a+ bXi and V = c+ dYi for i = 1, . . . , n, then the sample correlation
between U and V is

rU,V = sign(bd) rX,Y .

Proof: By the definition of sample correlation,

rU,V =
SU,V√
S2

US
2
V

=
bdSX,Y√
b2S2

X d
2S2

Y

=
bd

|bd|
SX,Y√
S2

X S
2
Y

= sign(bd) rX,Y .



Chapter 8

SAMPLES, STATISTICS, &
SAMPLING DISTRIBUTIONS

1. Definition: Parameter—A characteristic of the population.

2. Definition: Statistic—A characteristic of the sample. Specifically, a statistic is
a function of the sample;

T = g(X1, X2, . . . , Xn) and t = g(x1, x2, . . . , xn).

The function T is a random variable and the function t is a realization of the
random variable. For example, T1 = X and T2 = S2

X are statistics.

3. Definition: Sampling Distribution—A sampling distribution is the distribution
of a statistic. For example, the sampling distribution of X is the distribution
of X.

8.1 Random Sampling

1. Some non-random samples

• Voluntary response sample: the respondent controls whether or not s/he
is in the sample.

• Sample of convenience: the investigator obtains a set of units from the
population by using units that are available or can be obtained
inexpensively.

2. Random sampling from a finite population

• Procedure: select units from the population at random, one at a time.
Sampling can be done with or without replacement.

• Properties of random sampling

– The distribution of the sample is exchangeable

67
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– All possible samples of size n are equally likely (this is the definition
of a simple random sample).

– Each unit in the population has an equal chance of being selected.

• Definition: Population Distribution—the marginal distribution of Xi,
where Xi is the value of the ith unit in the sample. Note, the marginal
distribution of all Xis are identical by exchangeability.

3. Random sample of size n

• In general, a random sample of size n has many possible meanings (e.g.,
with replacement, without replacement, stratified, etc.).

• We (the text and lecture) will say “random sample of size n” when we
mean a sequence of independent and identically distributed (iid) random
variables. This can occur if one randomly samples from a finite
population with replacement, or randomly samples from an infinite
population. Unless it is qualified, the phrase “random sample of size n”
refers to iid random variables and does not refer to sampling without
replacement from a finite population.

• The joint pdf or pmf of a random sample of size n is denoted by

fX(x)
def
= fX1,X2,...,Xn(x1, x2, . . . , xn),

where X and x are vectors of random variables and realizations,
respectively. That is

X =




X1

X2
...
Xn


 and x =




x1

x2
...
xn


 .

The transpose of a column vector U is denoted by U′. For example,

X′ =
(
X1 X2 · · · Xn

)
.

• Using independence,

fX(x) =

n∏

i=1

fX(xi).

4. Example: Suppose that X1, X2, . . . , Xn is a random sample of size n from an
Expon(λ) distribution. Then the joint pdf of the sample is

fX(x) =
n∏

i=1

λe−λxiI(0,∞)(xi) = λn exp

{
−λ

n∑

i=1

xi

}
I(0,x(n)](x(1))I[x(1),∞)(x(n)).
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5. Example: Suppose that X1, X2, . . . , Xn is a random sample of size n from
Unif[a, b]. Then the joint pdf of the sample is

fX(x) =

n∏

i=1

(b− a)−1I[a,b](xi) = (b− a)nI[a,x(n)](x(1))I[x(1),b](x(n)).

6. PMF of a random sample taken without replacement from a finite population.
Consider a population of size N having k ≤ N distinct values. Denote the
values as v1, v2, . . . , vk. Suppose that the population contains M1 units with
value v1, M2 units with value v2, etc. Note that N =

∑k
j=1Mj. Select n units

at random without replacement from the population. Let Xi be the value of
the ith unit in the sample and denote the n× 1 vector of Xs by X. Let x be a
realization of X. That is, x is an n× 1 vector whose elements are chosen from
v1, v2, . . . , vk. Then the pmf of the sample is

fX(x) = P (X = x) =

k∏

j=1

(
Mj

yj

)

(
N

n

)(
n

y1, y2, . . . , yn

) ,

where yj is the frequency of vj in x.

Proof: Let Yj for j = 1, . . . , k be the frequency of vj in X. Note that∑k
j=1 Yj = n. Denote the vector of Y s by Y and the vector of ys by y. Also,

denote the number of distinct x sequences that yield y by ny. Then

fY(y) = Pr(Y = y) = fX(x) × ny,

where fX(x) is the probability of any specific sequence of x’s that contains y1

units with value v1, y2 units with value v2, etc. Multiplication of fX(x) by ny

is correct because each permutation of x has the same probability (by
exchangeability). Using counting rules from Stat 420, we can show that

fY(y) =

k∏

j=1

(
Mj

yj

)

(
N

n

) and ny =

(
n

y1, y2, . . . , yn

)
.

Accordingly, the pmf of the sample is

fX(x) =

k∏

j=1

(
Mj

yj

)

(
N

n

)(
n

y1, y2, . . . , yn

) .
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7. Example: Consider the population consisting of 12 voles, Mj voles of species j
for j = 1, 2, 3. Suppose that X1, X2, X3, X4 is a random sample taken without
replacement from the population. Furthermore, suppose that

x =
(
s3 s1 s1 s2

)′
,

where sj denotes species j. The joint pdf of the sample is

fX(s3, s1, s1, s2) =

(
M1

2

)(
M2

1

)(
M3

1

)

(
12

4

)(
4

2, 1, 1

) =
1
2
M1(M1 − 1)M2M3

495 × 12

=
M1(M1 − 1)M2(12 −M1 −M2)

11,880
.

8.2 Likelihood

1. Family of probability distributions or models: If the joint pdf or pmf of the
sample depends on the value of unknown parameters, then the joint pdf or
pmf is written as

fX(x|θ) where θ =
(
θ1 θ2 · · · θk

)′

is a vector of unknown parameters. For example, if X1, . . . , Xn is a random
sample of size n from N(µ, σ2), where µ and σ2 are unknown, then the joint
pdf is

fX(x|θ) = fX(x|µ, σ2) =

exp

{
1

2σ2

n∑

i=1

(xi − µ)2

}

(2πσ2)n/2
, where θ =

(
µ
σ2

)
.

If θ contains only one parameter, then is will be denoted as θ (i.e., no bold
face).

2. Likelihood Function: The likelihood function is a measure of how likely a
particular value of θ is, given that x has been observed. Caution: the
likelihood function is not a probability. The likelihood function is denoted by
L(θ) and is obtained by

• interchanging the roles of θ and x in the joint pdf or pmf of x, and

• dropping all terms that do not depend on θ.

That is,

L(θ) = L(θ|x) ∝ fX(x|θ).



8.2. LIKELIHOOD 71

3. Example: Suppose that X1, X2, . . . , Xn is a random sample of size n from an
Expon(λ) distribution. Then the likelihood function is

L(λ) = λn exp

{
−λ

n∑

i=1

xi

}
,

provided that all xs are in (0,∞). Note that the likelihood function and the
joint pdf are identical in this example. Suppose that n = 10 and that

x = (0.4393 0.5937 0.0671 2.0995 0.1320 0.0148 0.0050

0.1186 0.4120 0.3483)′

has been observed. The sample mean is x̄ = 4.2303/10 = 0.42303. The
likelihood function is plotted below. Ratios are used to compare likelihoods.
For example, the likelihood that λ = 2.5 is 1.34 times as large as the likelihood
that λ = 3;

L(2.5)

L(3)
= 1.3390.

Note: the x values actually were sampled from Expon(2).
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0

0.05

0.1

0.15

0.2

0.25

λ

Li
ke

lih
oo

d

Likelihood Function for a Sample from Expon(λ); n=10

4. Example: Suppose that X1, X2, . . . , Xn is a random sample of size n from
Unif[π, b]. Then the likelihood function is

L(b) = (b− π)−nI[x(n),∞](b),

provided that x(1) > π. Suppose that n = 10 and that

x = (5.9841 4.9298 3.7507 5.1264 3.8780 4.8656 6.0682
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4.1946 5.2010 4.3728)′

has been observed. For this sample, x(1) = 3.7507 and x(n) = 6.0682. The
likelihood function is plotted below. Note, the x values actually were sampled
from Unif(π, 2π).
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Likelihood Function for a Sample from Unif(π,b); n=10

5. Example: Consider the population consisting consisting of 12 voles, Mj voles
of species j for j = 1, 2, 3. Suppose that X1, X2, X3, X4 is a random sample
taken without replacement from the population. Furthermore, suppose that

x =
(
s3 s1 s1 s2

)′
,

where sj denotes species j. The likelihood function is

L(M1,M2) = M1(M1 − 1)M2(12 −M1 −M2).

Note, there are only two parameters, not three, because M1 +M2 +M3 = 12.
The likelihood function is displayed in the table below. Note: the x values
actually were sampled from a population in which M1 = 5, M2 = 3, and
M3 = 4.
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Value of M2

M1 0 1 2 3 4 5 6 7 8 9 10
0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
2 0 18 32 42 48 50 48 42 32 18 0
3 0 48 84 108 120 120 108 84 48 0 0
4 0 84 144 180 192 180 144 84 0 0 0
5 0 120 200 240 240 200 120 0 0 0 0
6 0 150 240 270 240 150 0 0 0 0 0
7 0 168 252 252 168 0 0 0 0 0 0
8 0 168 224 168 0 0 0 0 0 0 0
9 0 144 144 0 0 0 0 0 0 0 0
10 0 90 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0

6. Likelihood Principle:

All the information which the data provide concerning the relative
merits of two hypotheses is contained in the likelihood ratio of those
hypotheses on the data (Edwards, 1992).

Another way of stating the likelihood principal is that if two experiments, each
based on a model for θ, give the same likelihood, then the inference about θ
should be the same in the two experiments.

7. Example

(a) Experiment 1: Toss a 35 cent coin n independent times. Let θ be the
probability of a head and let X be the number of heads observed. Then
X has a binomial pmf:

fX(x|θ) =

(
n

x

)
θx(1 − θ)n−xI{0,1,...,n}(x),

where n = 20. Suppose that x = 6 heads are observed. Then the
likelihood function is

L(θ|x = 6) = θ6(1 − θ)14.

(b) Experiment 2: The 35 cent coin was tossed on independent trials until
r = 6 heads were observed. Let Y be the number of tosses required to
obtain 6 heads. Then Y has a negative binomial pmf:

fY (y|θ, r) =

(
y − 1

r − 1

)
θy(1 − θ)y−rI{r,r+1,...}(y),

where r = 6. Suppose that the 6th head occurred on the 20th trial. Then,
the likelihood function is

L(θ|y = 20) = θ6(1 − θ)14.
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The likelihood principal requires that any inference about θ be the same
from the two experiments.

(c) Suppose that we would like to test H0 : θ = 0.5 against Ha : θ < 0.5.
Based on the above two experiments, the p-values are

P (X ≤ 6|n = 20, θ = 0.5) =

6∑

x=0

(
20

x

)
(1/2)x(1 − 1/2)20−x = 0.0577

in the binomial experiment and

P (Y ≥ 20|r = 6, θ = 0.5) =
∞∑

y=20

(
y − 1

6 − 1

)
(1/2)6(1 − 1/2)y−6 = 0.0318

in the negative binomial experiment. If we fail to reject H0 in the first
experiment, but reject H0 in the second experiment, then we have
violated the likelihood principle.

8.3 Sufficient Statistics

1. Definition from the textbook: A statistic, T = t(X), is sufficient for a family of
distributions, fX(x|θ), if and only if the likelihood function depends on X
only through T :

L(θ) = h [t(X), θ] .

2. Usual definition: A statistic, T = t(X), is sufficient for a family of
distributions, fX(x|θ), if and only if the conditional distribution of X given T
does not depend on θ:

fX|T (x|t, θ) = h(x).

This definition says that after observing T , no additional functions of the data
provide information about θ. It can be shown that the two definitions are
equivalent.

3. Sample Space and Partitions: The sample space is the set of all possible values
of X. It is the same as the support for the joint pdf (or pmf) of X. A statistic
partitions the sample space. Each partition corresponds to a different value of
of the statistic. A specific partition contains all possible values of x that yield
the specific value of the statistic that indexes the partition. If the statistic is
sufficient, then the only characteristic of the data that we need to examine is
which partition the sample belongs to.

4. Non-uniqueness of the sufficient statistic: If T is a sufficient statistic, then any
one-to-one transformation of T also is sufficient. Note that any transformation
of T induces the same partitioning of the sample space. Accordingly, the
sufficient statistic is not unique, but the partitioning that corresponds to T is
unique.
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5. Factorization Criterion (Neyman): A statistic, T = t(X) is sufficient if and
only if the joint pdf (pmf) factors as

fX(x|θ) = g [t(x)|θ] h(x).

In some cases, h(x) is a trivial function of x. For example, h(x) = c, where c
is a constant not depending on x.

6. Example: Bernoulli trials—Let Xi for i = 1, . . . , n be iid Bern(p) random
variables. Note, θ = p. The joint pmf is

fX(x|p) =

n∏

i=1

pxi(1 − p)1−xiI{0,1}(xi) = py(1 − p)n−y

n∏

i=1

I{0,1}(xi),

where y =
∑n

i=1 xi. Accordingly, Y =
∑n

i=1Xi is sufficient.

For this example, it is not too hard to verify that the conditional distribution
of X given Y does not depend on p. The conditional distribution of X given
Y = y is

P (X = x|Y = y) =
P (X = x)I{y} (

∑
xi)

P (Y = y)

=

n∏

i=1

pxi(1 − p)1−xiI{0,1}(xi)I{y}

(∑
xi

)

(
n

y

)
py(1 − p)n−yI{0,1,2,...,n}(y)

=

n∏

i=1

I{0,1}(xi)I{y}

(∑
xi

)

(
n

y

)
I{0,1,2,...,n}(y)

which does not depend on p. That is, the conditional distribution of X given a
sufficient statistic does not depend on θ.

7. Example: Sampling from Poi(λ). Let X1, . . . , Xn be a random sample of size n
from Poi(λ). The joint pmf is

fX(x|λ) =
e−nλλt

n∏

i=1

xi!

n∏

i=1

I{0,1,...,∞}(xi), where t =
n∑

i=1

xi.

Accordingly, the likelihood function is

L(λ) = e−nλλt
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and T =
∑n

i=1Xi is sufficient. Recall that T ∼ Poi(nλ). Therefore, the
distribution of X conditional on T = t is

P (X = x|T = t) =
P (X = x, T = t)

P (T = t)

=

e−nλλtI{t}

(∑
xi

)
t!

n∏

i=1

I{0,1,...,∞}(xi)

(
n∏

i=1

xi!

)
e−nλ(nλ)t

=

(
t

x1, x2, . . . , xn

)(
1

n

)x1
(

1

n

)x2

· · ·
(

1

n

)xn

=⇒ (X|T = t) ∼ multinom

(
t,

1

n
,
1

n
, . . . ,

1

n

)
.

Note that the distribution of X, conditional on the sufficient statistic does not
depend on λ.

8. Example: Suppose that Xi ∼ iid N(µ, 1), for i = 1, . . . , n. The joint pdf is

fX(x|µ) =

exp

{
−1

2

n∑

i=1

(xi − µ)2

}

(2π)
n
2

=

exp

{
−1

2

n∑

i=1

(xi − x̄ + x̄− µ)2

}

(2π)
n
2

=

exp

{
−1

2

n∑

i=1

[
(xi − x̄)2 + 2(xi − x̄)(x̄− µ) + (x̄− µ)2

]
}

(2π)
n
2

=

exp

{
−1

2

n∑

i=1

(xi − x̄)2 + n(x̄− µ)2

}

(2π)
n
2

because

n∑

i=1

(xi − x̄) = 0

= exp
{
−n

2
(x̄− µ)2

} exp

{
−1

2

n∑

i=1

(xi − x̄)2

}

(2π)
n
2

.

Accordingly, the likelihood function is

L(θ) = exp
{
−n

2
(x̄− µ)2

}
,

and X is sufficient for the family of distributions. This means that X contains
all of the information about µ that is contained in the data. That is, if we
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want to use the sample to learn about µ, we should examine X and we need
not examine any other function of the data.

9. Order Statistics are sufficient: If X1, . . . , Xn is a random sample (with or
without replacement), then the order statistics are sufficient.

Proof: By exchangeability,

fX(X|θ) = fX(X(1), X(2), . . . , X(n)|θ).

The likelihood function is proportional to the joint pdf or pmf. Therefore, the
likelihood function is a function of the order statistics and, by definition 1, the
order statistics are sufficient.

If the random sample is taken from a continuous distribution, then it can be
shown that

P (X = x|x(1), . . . , x(n)) =
1

n!

and this distribution does not depend on θ. Therefore, by definition 2 the
order statistics are sufficient.

10. The One Parameter Exponential Family: The random variable X is said to
have a distribution within the one parameter regular exponential family if

fX(x|θ) = B(θ)h(x) exp{Q(θ)R(x)},

where Q(θ) is a nontrivial continuous function of θ, and R(x) is a nontrivial
function of x. Note that if the support of X is represented as an indicator
variable, then the indicator variable is part of h(x). That is, the support
cannot depend on θ. Either or both of the functions B(θ) and h(x) could be
trivial.

A random sample of size n from an exponential family has pdf (or pmf)

fX(x|θ) = B(θ)n exp

{
Q(θ)

n∑

i=1

R(xi)

}
n∏

i=1

h(xi).

By the factorization criterion, T =
∑n

i=1R(Xi) is sufficient for θ.

11. Examples of one parameter exponential families and the corresponding
sufficient statistic.

• Consider a random sample of size n from N(µ, σ2), where σ2 is known.
Then T =

∑n
i=1Xi is sufficient.

• Consider a random sample of size n from N(µ, σ2), where µ is known.
Then T =

∑n
i=1(Xi − µ)2 is sufficient.

• Consider a random sample of size n from Bern(p). Then T =
∑n

i=1Xi is
sufficient.
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• Consider a random sample of size k from Bin(n, p). Then T =
∑k

i=1 Yi is
sufficient.

• Consider a random sample of size n from Geom(p). Then T =
∑n

i=1Xi is
sufficient.

• Consider a random sample of size n from NegBin(r, p), where r is known.
Then T =

∑n
i=1Xi is sufficient.

• Consider a random sample of size n from Poi(λ). Then T =
∑n

i=1Xi is
sufficient.

• Consider a random sample of size n from Expon(λ). Then T =
∑n

i=1Xi

is sufficient.

• Consider a random sample of size n from Gam(α, λ), where α is known.
Then T =

∑n
i=1Xi is sufficient.

• Consider a random sample of size n from Gam(α, λ), where λ is known.
Then T =

∑n
i=1 ln(Xi) is sufficient.

• Consider a random sample of size n from Beta(α1, α2), where α1 is
known. Then T =

∑n
i=1 ln(1 −Xi) is sufficient.

• Consider a random sample of size n from Beta(α1, α2), where α2 is
known. Then T =

∑n
i=1 ln(Xi) is sufficient.

12. Examples of distributions that do not belong to the exponential family.

• Consider a random sample of size n from Unif(a, b), where a is known.
Then T = X(n) is sufficient by the factorization criterion.

• Consider a random sample of size n from Unif(a, b), where b is known.
Then T = X(1) is sufficient by the factorization criterion.

• Consider a random sample of size n from Unif(a, b), where neither a nor b
is known. Then

T =

(
X(1)

X(n)

)

is sufficient by the factorization criterion.

• Consider a random sample of size n from Unif(θ, θ + 1). Then

T =

(
X(1)

X(n)

)

is sufficient by the factorization criterion.

13. Example: consider a random sample of size n from N(µ, σ2), where neither
parameter is known. Write (Xi − µ) as

(Xi − µ)2 = [(Xi −X) + (X − µ)]2

= (Xi −X)2 + 2(Xi −X)(X − µ) + (X − µ)2.
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The likelihood function can be written as

L(µ, σ2|X) =

exp

{
1

2σ2

n∑

i=1

(Xi − µ)2

}

(
2πσ2

)n
2

=

exp

{
1

2σ2

n∑

i=1

[
(Xi −X)2 + 2(Xi −X)(X − µ) + (X − µ)2

]
}

(
2πσ2

)n
2

=

exp

{
1

2σ2

[
n∑

i=1

(Xi −X)2 + n(X − µ)2

]}

(
2πσ2

)n
2

.

By the factorization criterion,

T =

(
S2

X

X

)

is sufficient.

8.4 Sampling Distributions

Recall that a statistic is a random variable. The distribution of a statistic is called a
sampling distribution. This section describes some sampling distributions that can
be obtained analytically.

1. Sampling without replacement from a finite population. Consider a finite
population consisting of N units, where each unit has one of just k values,
v1, . . . , vk. Of the N units, Mj have value vj for j = 1, . . . , k. Note that∑k

j=1Mj = N . Take a sample of size n, one at a time at random and without

replacement. Let Xi be the value of the ith unit in the sample. Also, let Yj be
the number of Xs in the sample that have value vj. If
θ′ =

(
M1 M2 · · · Mk

)
is the vector of unknown parameters, then the joint

pmf of X1, . . . , Xn is

fX(x|θ) =

k∏

j=1

(
Mj

yj

)

(
N

n

)(
n

y1, y2, . . . , yn

)

×I{n}(
k∑

j=1

yj)
n∏

i=1

I{v1,...,vk}(xi)
k∏

j=1

I{0,1,...,Mj}(yj).
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By the factorization theorem, Y =
(
Y1, Y2 · · · Yk

)′
is a sufficient statistic.

The sampling distribution of Y is

fY(y|θ) =

k∏

j=1

(
Mj

yj

)

(
N

n

) I{n}

(
k∑

j=1

yj

)
k∏

j=1

I{0,1,...,Mj}(yj).

Note that T =
(
Y1, Y2 · · · Yk−1

)′
also is sufficient because

Yk = N −
∑k−1

j=1 Yj and therefore Y is a one-to-one function of T If k = 2, then
the sampling distribution simplifies to the hypergeometric distribution.

2. Sampling with replacement from a finite population that has k distinct values
or sampling without replacement from an infinite population that has k
distinct values. Consider a population for which the proportion of units having
value vj is pj, for j = 1, . . . , k. Note then

∑k
j=1 pj = 1. Take a sample of size

n, one at a time at random and with replacement if the population is finite.
Let Xi be the value of the ith unit in the sample. Also, let Yj be the number of
Xs in the sample that have value vj. Let θ′ =

(
p1 p2 · · · pk

)
be the vector

of unknown parameters. The Xs are iid and the joint pmf of the sample is

fX(x|θ) =
n∏

i=1

k∏

j=1

p
I{vj}

(xi)

j I{v1 ,...,vk}(xi)

=
k∏

j=1

p
yj

j I{n}

(
k∑

j=1

yj

)
k∏

j=1

I{0,1,...,n}(yj).

Accordingly, Y′ =
(
Y1, Y2 · · · Yk

)
is a sufficient statistic. The sampling

distribution of Y is multinomial:

fY(y|θ) =

(
n

y1, y2, . . . , yk

) k∏

j=1

p
yj

j I{n}

(
k∑

j=1

yj

)
k∏

j=1

I{0,1,...,n}(yj).

If k = 2, then the sampling distribution simplifies to the binomial distribution.

3. Sampling from a Poisson distribution. Suppose that litter size in coyotes
follows a Poisson distribution with parameter λ. Let X1, . . . , Xn be a random
sample of litter sizes from n dens. The Xs are iid and the joint pmf of the
sample is

P (X = x) =
n∏

i=1

e−λλxi

xi!
I{0,1,...}(xi)

=
e−nλλy

n∏

i=1

xi!

n∏

i=1

I{0,1,...}(xi),
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where y =
∑
xi. Accordingly, Y =

∑
Xi is sufficient. The sampling

distribution of Y is Poisson:

fY(y|θ) =
e−nλ(nλ)y

y!
I{0,1,...}(y).

4. Minimum of exponential random variables. Let Ti ∼ iid Expon(λ) for
i = 1, . . . , n and let T(1) be the smallest order statistic. Then the sampling
distribution of T(1) is T(1) ∼ Expon(nλ). See problem 6-31.

5. Maximum of exponential random variables. As in problem 6-31 Let ti be the

failure time for the ith bus. Suppose that Ti ∼ iid Expon(λ) for i = 1, . . . , n
and let T(n) be the largest order statistic. The cdf of T(n) is

P (T(n) ≤ t) = FT(n)
(t) = P (all buses fail before time t)

=

n∏

i=1

P (Ti < t) because the failure times are

=

n∏

i=1

(1 − e−λt) = (1 − e−λt)nI(0,∞)(t).

The pdf of T(n) can be found by differentiation:

fT(n)
(t) =

d

dt
FT(n)

(t) = (1 − e−λt)n−1nλe−λtI(0,∞)(t).

6. Maximum of uniform random variables. Suppose that Xi ∼ iid Unif(0, θ).
The Xs are iid and the joint pdf is

fX(x|θ) =

n∏

i=1

1

θ
I(0,θ)(xi)

=
1

θn
I(0,θ)(x(n))

n∏

i=1

I(0,x(n))(xi).

Accordingly, X(n) is sufficient. The cdf of X(n) is

P (X(n) ≤ x) = FX(n)
(x) = P (all Xs ≤ x)

=

n∏

i=1

P (Xi < x) because the Xs are

=
n∏

i=1

x

θ
=
(x
θ

)n

I(0,θ)(x).

The pdf of X(n) can be found by differentiation:

fX(n)
(x) =

d

dx
FT(n)

(x) =
nxn−1

θn
I(0,θ)(x).
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8.5 Simulating Sampling Distributions

1. How to simulate a sampling distribution

(a) Choose a population distribution of interest: example Cauchy with
µ = 100 and σ = 10

(b) Choose a statistic or statistics of interest: example sample median and
sample mean

(c) Choose a sample size: example n = 25

(d) Generate a random sample of size n from the specified distribution. The
inverse cdf method is very useful here. For the Cauchy(µ, σ2)
distribution, the cdf is

FX(x|µ, σ) =

arctan

(
x− µ

σ

)

π
+

1

2
.

Accordingly, if U ∼ Unif(0, 1), then

X = tan

[
(U − 1

2
)π

]
σ + µ ∼ Cauchy(µ, σ2).

(e) Compute the statistic or statistics.

(f) Repeat the previous two steps a large number of times.

(g) Plot, tabulate, or summarize the resulting distribution of the statistic.

2. Example: Sampling distribution of the mean; n = 25, from Cauchy with
µ = 100 and σ = 10;

(a) Number of samples generated: 50,000

(b) Mean of the statistic: 85.44

(c) Standard deviation of the statistic: 4,647.55

(d) Plot of the statistic.
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Sampling Distribution of Sample Mean from Cauchy, n=25, µ = 100, σ = 10

(e) Most of the distribution is centered near µ, but the tails are very fat. It
can be shown that the sample mean also has a Cauchy distribution with
µ = 100 and σ = 10.

3. Example: Sampling distribution of the median; n = 25, from Cauchy with
µ = 100 and σ = 10;

(a) Number of samples generated: 50,000

(b) Mean of the statistic: 100.01

(c) Standard deviation of the statistic: 3.35

(d) Plot of the statistic.
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(e) Let Mn be the sample median from a sample of size n from the Cauchy
distribution with parameters µ and σ. It can be shown that as n goes to
infinity, the distribution of the statistic

Zn =

√
n(Mn − µ)

1
2
σπ

converges to N(0, 1). That is, for large n,

Mn∼̇ N

[
µ,
σ2π2

4n

]
.

Note, for n = 25 and σ = 10, Var(M) ≈ π2.

4. To generate normal random variables, the Box-Muller method can be used.
see page 44 of these notes.

8.6 Order Statistics

This section examines the distribution of order statistics from continuous
distributions.

1. Marginal Distributions of Order Statistics

(a) Suppose that Xi, i = 1, . . . , n is a random sample of size n from a
population with pdf fX(x) and cdf FX(x). Consider X(k), the kth order
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statistic. To find the pdf, fX(k)
(x), first partition the real line into three

pieces:

I1 = (∞, x], I2 = (x, x+ dx], and I3 = (x + dx,∞).

The pdf of fX(k)
(x) is (approximately) the probability of observing k − 1

Xs in I1, exactly one X in I2 and the remaining n− k Xs in I3. This
probability is

fX(k)
(x) ≈

(
n

k − 1, 1, n− k

)
[FX(x)]k−1 [fX(x)dx]1 [1 − FX(x)]n−k .

Accordingly (by the differential method), the pdf of X(k) is

fX(k)
(x) =

(
n

k − 1, 1, n− k

)
[FX(x)]k−1 [1 − FX(x)]n−k fX(x).

(b) Example—Smallest order statistic:

fX(1)
(x) =

(
n

0, 1, n− 1

)
[FX(x)]0 [1 − FX(x)]n−1 fX(x)

= n [1 − FX(x)]n−1 fX(x).

(c) Example—Largest order statistic:

fX(n)
(x) =

(
n

n− 1, 1, 0

)
[FX(x)]n−1 [1 − FX(x)]0 fX(x)

= n [FX(x)]n−1 fX(x).

(d) Example—Unif(0, 1) distribution. The cdf is FX(x) = x and the pdf of
the kth order statistic is

fX(k)
(x) =

(
n

k − 1, 1, n− k

)
xk−1(1 − x)n−kI(0,1)(x)

=
xk−1(1 − x)n−k

B(k, n− k + 1)
I(0,1)(x),

where B is the beta function. That is, X(k) ∼ Beta(k, n− k + 1).

(e) Example: Find the exact pdf of the median from an odd size sample. In
this case, k = (n+ 1)/2 and the pdf is

fX((n+1)/2)
(x) =

(
n

n−1
2
, 1, n−1

2

)
[FX(x)](n−1)/2 [1 − FX(x)](n−1)/2 fX(x)

=
[FX(x)](n−1)/2 [1 − FX(x)](n−1)/2 fX(x)

B

(
n− 1

2
,
n− 1

2

) .
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For example, if X has a a Cauchy distribution with parameters µ and σ,
then the cdf is

FX(x) =
arctan

(
x−µ

σ

)

π
+

1

2
and the pdf of the median, M = X( n−1

2
), is

fM(m) =

[
arctan

(
m−µ

σ

)

π
+

1

2

](n−1)/2 [
1

2
− arctan

(
m−µ

σ

)

π

](n−1)/2

B

(
n− 1

2
,
n− 1

2

)

× 1

σπ

[
1 +

(
m− µ

σ

)2
]−1

.

2. Joint Distributions of Order Statistics

(a) Suppose that Xi, i = 1, . . . , n is a random sample of size n from a
population with pdf fX(x) and cdf FX(x). Consider (X(k), X(m)) the kth

and mth order statistics, where k < m. To find the joint pdf
fX(k),X(m)

(v, w), first partition the real line into five pieces:

I1 = (∞, v], I2 = (v, v + dv], I3 = (v + dv, w],

I4 = (w,w + dw], and I5 = (w + dw,∞).

The joint pdf of fX(k),X(m)
(v, w) is (approximately) the probability of

observing k− 1 Xs in I1, exactly one X in I2, m− k− 1 Xs in I3, exactly
one X in I4 and the remaining n−m Xs in I5. This probability is

fX(k),X(m)
(v, w) ≈

(
n

k − 1, 1, m− k − 1, 1, n−m

)
[FX(v)]k−1

× [fX(v) dv]1 [FX(w) − FX(v)]m−k−1 [fX(w)dw]1

× [1 − FX(w)]n−m ,

where v < w. Accordingly (by the differential method), the joint pdf of
X(k) and X(m) is

fX(k),X(m)
(v, w) =

n!

(k − 1)!(m− k − 1)!(n−m)!
[FX(v)]k−1

× [FX(w) − FX(v)]m−k−1 [1 − FX(w)]n−m

×fX(v)fX(w)I(v,∞)(w).

(b) Example—joint distribution of smallest and largest order statistic. Let
k = 1 and m = n to obtain

fX(1),X(n)
(v, w) = n(n− 1) [FX(w) − FX(v)]n−2

×fX(v)fX(w)I(v,∞)(w).
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(c) Example—joint distribution of smallest and largest order statistics from
Unif(0, 1). The cdf is FX(x) = x and the joint distribution of X(1) and
X(n) is

fX(1),X(n)
(v, w) = n(n− 1)(w − v)n−2I(v,∞)(w).

3. Distribution of Sample Range

(a) Let R = X(n) −X(1). The distribution of this random variable is needed
to construct R charts in quality control applications and to compute
percentiles of Tukey’s studentized range statistic (useful when making
comparisons among means in ANOVA). To find the pdf of R, we will first
find an expression for the cdf of R:

P (R ≤ r) = FR(r) = P [X(n) −X(1) ≤ r] = P [X(n) ≤ r +X(1)]

= P [X(1) ≤ X(n) ≤ r +X(1)]

because X(1) ≤ X(n) must be satisfied

=

∫ ∞

−∞

∫ v+r

v

fX(1),X(n)
(v, w) dw dv.

To obtain fR(r), take the derivative with respect to r. Leibnitz’s rule can
be used.

• Leibnitz’s Rule: Suppose that a(θ), b(θ), and g(x, θ) are
differentiable functions of θ. Then

d

dθ

∫ b(θ)

a(θ)

g(x, θ)dx = g [b(θ), θ]
d

dθ
b(θ) − g [a(θ), θ]

d

dθ
a(θ)

+

∫ b(θ)

a(θ)

d

dθ
g(x, θ)dx.

Accordingly,

fR(r) =
d

dr
FR(r) =

d

dr

∫ ∞

−∞

∫ v+r

v

fX(1),X(n)
(v, w) dw dv

=

∫ ∞

−∞

d

dr

∫ v+r

v

fX(1),X(n)
(v, w) dw dv

=

∫ ∞

−∞

[
fX(1),X(n)

(v, v + r)
d

dr
(v + r) − fX(1),X(n)

(v, v)
d

dr
v

]
dv

+

∫ ∞

−∞

∫ v+r

v

d

dr
fX(1),X(n)

(v, w) dw dv

=

∫ ∞

−∞

fX(1),X(n)
(v, v + r) dv.

(b) Example—Distribution of sample range from Unif(0, 1). In this case, the
support for X(1), X(n) is 0 < v < w < 1. Accordingly, fX(1),X(n)

(v, v + r) is
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non-zero only if 0 < v < v + r < 1. This implies that 0 < v < 1 − r and
that r ∈ (0, 1). The pdf of R is

fR(r) =

∫ 1−r

0

n(n− 1)(v + r − v)n−2 dv = n(n− 1)rn−2(1 − r)I(0,1)(r)

=
rn−2(1 − r)

B(n− 1, 2)
I(0,1)(r).

That is, R ∼ Beta(n− 1, 2).

4. Joint distribution of All Order Statistics. Employing the same procedure as
for a pair if order statistics, it can be shown that the joint distribution of
X(1), . . . , X(n) is

fX(1),...,X(n)
(x1, . . . , xn) = n!

n∏

i=1

fX(xi) where x1 < x2 < · · · < xn.

8.7 Moments of Sample Means and Proportions

Let X1, . . . , Xn be a random sample of size n taken either with or without
replacement from a population having mean µX and variance σ2

X . Denote the
support of the random variable X by SX . The following definitions are used:

X =
1

n

n∑

i=1

Xi

p̂ =
1

n

n∑

i=1

Xi if SX = {0, 1}

S2
X =

1

n− 1

n∑

i=1

(Xi −X)2 =
1

n− 1

[
n∑

i=1

X2
i − nX

2

]
and

S2
X =

1

n− 1

n∑

i=1

(Xi −X)2 =
np̂(1 − p̂)

n− 1
if SX = {0, 1}.

This section examines the expectation and variance of X and p̂; the expectation
of S2

X ; and unbiased estimators of Var(X). The following preliminary results are
important and could be asked for on exams:

E(Xi) = µX ; (8.1)

Var(Xi) = σ2
X ; (8.2)

E(X2
i ) = µ2

X + σ2
X ; (8.3)

Var(X) = n−2

[
n∑

i=1

Var(Xi) +
∑

i6=j

Cov(Xi, Xj)

]
; (8.4)
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Cov(Xi, Xj) =

{
0 if sampling with replacement,

− σ2
X

N−1
if sampling without replacement; and

(8.5)

E(X
2
) = µ2

X
+ Var(X). (8.6)

The result in equation 8.5 is true because X1, . . . , Xn are iid if sampling with
replacement and

Var

(
N∑

i=1

Xi

)
= 0 = N Var(Xi) +N(N − 1) Cov(Xi, Xj)

if sampling without replacement. The remaining results in equations 8.1–8.6 follow
from exchangeability and from the definition of the variance of a random variable.

Be able to use the preliminary results to prove any of the following results. See
pages 63 to 64 of these notes.

1. Case I: Random Sample of size n =⇒ X1, X2, . . . , Xn are iid.

(a) Case Ia: Random Variable has Arbitrary Support

• E(Xi) = µX .

• Cov(Xi, Xj) = 0 for i 6= j

• Var(X) = E(X2
i ) − [E(Xi)]

2 = σ2
X .

• E(X) = µX .

• Var(X) =
σ2

X

n
.

• E(S2
X) = σ2

X .

• E

(
S2

X

n

)
=
σ2

X

n
= Var(X).

(b) Case Ib: Random Variable has Support SX = {0, 1}
• E(Xi) = p.

• Cov(Xi, Xj) = 0 for i 6= j

• Var(X) = E(X2
i ) − [E(Xi)]

2 = σ2
X = p(1 − p).

• E(p̂) = p.

• Var(p̂) =
σ2

X

n
=
p(1 − p)

n
.

• E(S2
X) = σ2

X = p(1 − p). When taking large samples from a binary
population, σ2

X = p(1 − p) is usually estimated by σ̂2 = p̂(1 − p̂)
rather than S2

X = p̂(1 − p̂) n
n−1

. Note that σ̂2 has bias −p(1 − p)/n.

• E

(
S2

X

n

)
=
p(1 − p)

n
= Var(p̂).

2. Case II: Random Sample of size n without replacement

(a) Case IIa: Random Variable has Arbitrary Support
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• E(Xi) = µX .

• Cov(Xi, Xj) = −σ
2
X

N
for i 6= j

• Var(X) = E(X2
i ) − [E(Xi)]

2 = σ2
X .

• E(X) = µX .

• Var(X) =
σ2

X

n

(
1 − n− 1

N − 1

)
.

• E(S2
X) = σ2

X

N

N − 1
.

• E

[
S2

X

n

(
1 − n

N

)]
=
σ2

X

n

(
1 − n− 1

N − 1

)
= Var(X).

(b) Case IIb: Random Variable has Support SX = {0, 1}
• E(Xi) = p.

• Cov(Xi, Xj) = −σ
2
X

N
= −p(1 − p)

N
for i 6= j

• Var(X) = E(X2
i ) − [E(Xi)]

2 = σ2
X = p(1 − p).

• E(p̂) = p.

• Var(p̂) =
σ2

X

n

(
1 − n− 1

N − 1

)
=
p(1 − p)

n

(
1 − n− 1

N − 1

)
.

• E(S2
X) = E

(
np̂(1 − p̂)

n− 1

)
= σ2

X

(
N

N − 1

)
= p(1 − p)

(
N

N − 1

)
.

• E

[
S2

X

n

(
1 − n

N

)]
= E

[
np̂(1 − p̂)

n(n− 1)

(
1 − n

N

)]
=

p(1 − p)

n

(
1 − n− 1

N − 1

)
= Var(p̂).

8.8 The Central Limit Theorem (CLT)

Theorem Let X1, X2, . . . , Xn be a random sample of size n from a population with
mean µX and variance σ2

X . Then, the distribution of

Zn =
X − µX

σX/
√
n

converges to N(0, 1) as n→ ∞.
The importance of the CLT is that the convergence of Zn to a normal

distribution occurs regardless of the shape of the distribution of X. Transforming
from Zn to X reveals that

X ∼̇ N

(
µX ,

σ2
X

n

)

if n is large.
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1. The asymptotic distribution of X is said to be N(µX , σ
2
X/n). The limiting

distribution of X is degenerate lim
n→∞

Pr(X = µX) = 1.

2. Another way to express the CLT is

lim
n→∞

Pr

(√
n(X − µX)

σX

≤ c

)
= Φ(c).

Note, equation (2) on page 341 of the text is not correct. It should be

lim
n→∞

P (X ≤ c) =

{
0 if c < µX ,

1 if c ≥ µX .

3. Application to Sums of iid random variables: If X1, X2, . . . , Xn are iid from a
population with mean µX and variance σ2

X , then

E

(
n∑

i=1

Xi

)
= nµX ,

Var

(
n∑

i=1

Xi

)
= nσ2

X , and

lim
n→∞

Pr




n∑

i=1

Xi − nµX

√
nσX

≤ c




= Φ(c).

4. How large must n be before X is approximately normal? The closer the
parent distribution is to a normal distribution, the smaller is the required
sample size. When sampling from a normal distribution, a sample size of
n = 1 is sufficient. Larger sample sizes are required from parent distributions
with strong skewness and/or strong kurtosis. For example, suppose that
X ∼ Expon(λ). This distribution has skewness and kurtosis

κ3 =
E(X − µX)3

σ
3
2
X

= 2 and κ4 =
E(X − µX)4

σ4
X

− 3 = 6,

where µX = 1/λ and σ2
X = 1/λ2. The sample mean, X has distribution

Gam(n, nλ). The skewness and kurtosis of X are

κ3 =
E(X − µX)3

σ
3
2

X

=
2√
n

and κ4 =
E(X − µX)4

σ4
X

− 3 =
6

n
,

where µX = 1/λ and σ2
X

= 1/(nλ2). Below are plots of the pdf of Zn for
n = 1, 2, 5, 10, 25, 100.
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5. Application to Binomial Distribution: Suppose that X ∼ Bin(n, p). Recall
that X has the same distribution as the sum of n iid Bern(p) random
variables. Accordingly, for large n

p̂ ∼̇ N

(
p,
p(1 − p)

n

)
and

Pr(p̂ ≤ c) ≈ Φ

(√
n(c− p)√
p(1 − p)

)
.

6. Continuity Correction. If X ∼ Bin(n, p), then for large n

X ∼̇ N [np, np(1 − p)] and

Pr(X = x) = Pr

(
x− 1

2
≤ X ≤ x+

1

2

)
for x = 0, 1, . . . , n

≈ Φ

(
x+ 0.5 − np√
np(1 − p)

)
− Φ

(
x− 0.5 − np√
np(1 − p)

)
.

Adding or subtracting 0.5 is called the continuity correction. The continuity
corrected normal approximations to the cdfs of X and p̂ are

Pr(X ≤ x) = Pr

(
X ≤ x +

1

2

)
for x = 0, 1, . . . , n; and

≈ Φ

(
x + 0.5 − np√
np(1 − p)

)
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Pr(p̂ ≤ c) = Pr

(
p̂ ≤ c+

1

2n

)
for c =

0

n
,
1

n
,
2

n
, . . . ,

n

n

≈ Φ

(√
n(c+ 1

2n
− p)√

p(1 − p)

)
.

8.9 Using the Moment Generating Function

1. Let X1, X2, . . . , Xn be a random sample of size n. We wish to find the
distribution of X. One approach is to find the mgf of X and (hopefully) to
identify the corresponding pdf or pmf. Let ψX(t) be the mgf of X. The mgf of
X is

ψX(t) = E

(
exp

{
t

n

n∑

i=1

Xi

})

= E

(
n∏

i=1

exp

{
t

n
Xi

})

=
n∏

i=1

E

(
exp

{
t

n
Xi

})
by independence

=

n∏

i=1

ψXi

(
t

n

)

=

[
ψX

(
t

n

)]n

because the Xs are identically distributed.

2. Example: Exponential distribution. If X1, X2, . . . , Xn is a random sample of
size n from Expon(λ), then

ψX(t) =
λ

λ− t
and ψX(t) =

(
λ

λ− t
n

)n

=

(
nλ

nλ− t

)n

which is the mgf of Gam(n, nλ).

3. Example: Normal Distribution. If X1, X2, . . . , Xn is a random sample of size n
from N(µX , σ

2
X), then

ψX(t) = exp

{
tµX +

t2σ2
X

2

}
and

ψX(t) =

(
exp

{
t

n
µX +

t2σ2
X

2n2

})n

= exp

{
tµX +

t2σ2
X

2n

}

which is the mgf of N(µX , σ
2
X/n).
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4. Example: Poisson Distribution. If X1, X2, . . . , Xn is a random sample from
Poi(λ), then

ψX(t) = eλ(et−1) and

ψY (t) = enλ(et−1),

where Y =
∑n

i=1Xi = nX. Accordingly, nX ∼ Poi(nλ) and

P (X = x) = P (nX = nx) =





e−nλλnx

(nx)!
for x = 0

n
, 1

n
, 2

n
, . . .;

0 otherwise.

5. A useful limit result. Let a be a constant and let o (n−1) be a term that goes
to zero faster than does n−1. That is,

lim
n→∞

o (n−1)

1/n
= lim

n→∞
no
(
n−1
)

= 0.

Then
lim

n→∞

[
1 +

a

n
+ o

(
n−1
)]n

= ea.

Proof:

lim
n→∞

[
1 +

a

n
+ o

(
n−1
)]n

= lim
n→∞

exp
{
n ln

[
1 +

a

n
+ o

(
n−1
)]}

= exp
{

lim
n→∞

n ln
[
1 +

a

n
+ o

(
n−1
)]}

.

The Taylor series expansion of ln(1 + ε) around ε = 0 is

ln(1 + ε) =
∞∑

i=1

(−1)i+1εi

i
= ε− ε2

2
+
ε3

3
− ε4

4
+ · · · ,

provided that |ε| < 1. Let ε = a/n+ o (n−1). If n is large enough to satisfy
|a/n+ o (n−1) | < 1, then

ln
[
1 +

a

n
+ o

(
n−1
)]

=
a

n
+ o

(
n−1
)

−1

2

[a
n

+ o
(
n−1
)]2

+
1

3

[a
n

+ o
(
n−1
)]3

− · · ·

=
a

n
+ o

(
n−1
)

because terms such as a2/n2 and ao (n−1) /n go to zero faster than does 1/n.
Accordingly,

lim
n→∞

[
1 +

a

n
+ o

(
n−1
)]n

= exp
{

lim
n→∞

n ln
[
1 +

a

n
+ o

(
n−1
)]}
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= exp
{

lim
n→∞

n
[a
n

+ o
(
n−1
)]}

= exp
{

lim
n→∞

a+ no
(
n−1
)}

= exp{a+ 0} = ea.

6. Heuristic Proof of CLT using MGF: Write Zn as

Zn =
X − µX

σX/
√
n

=

1

n

n∑

i=1

Xi − µX

σX/
√
n

=

n∑

i=1

1

n
(Xi − µX)

σX/
√
n

=
n∑

i=1

Z∗
i√
n
, where Z∗

i =
Xi − µX

σX

=

n∑

i=1

Ui, where Ui =
Z∗

i√
n
.

Note that Z1, Z2, . . . , Zn are iid with E(Z∗
i ) = 0 and Var(Z∗

i ) = 1. Also,
U1, U2, . . . , Un are iid with E(Ui) = 0 and Var(Ui) = 1/n. If Ui has a moment
generating function, then it can be written in expanded form as

ψUi
(t) = E

(
etUi
)

=

∞∑

j=0

tj

j!
E(U j

i )

= 1 + tE(Ui) +
t2

2
E(U2

i ) +
t3

3!
E(U3

i ) +
t4

4!
E(U4

i ) + · · ·

= 1 + t
E(Z∗

i )√
n

+
t2

2

E(Z∗2
i )

n
+
t3

3!

E(Z∗3
i )

n
3
2

+
t4

4!

E(Z∗4
i )

n2
+ · · ·

= 1 +
t2

2n
+ o

(
n−1
)
.

Therefore, the mgf of Zn is

ψZn(t) = E (exp {tZn})

= E

(
exp

{
t

n∑

i=1

Ui

})

= [ψUi
(t)]n because U1, U2, . . . , Un are iid

=

[
1 +

t2

2n
+ o

(
n−1
)]n

.
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Now use the limit result to take the limit of ψZn(t) as n goes to ∞:

lim
n→∞

ψZn(t) = lim
n→∞

[
1 +

t2

2n
+ o

(
n−1
)]n

= exp

{
t2

2

}

which is the mgf of N(0, 1). Accordingly, the distribution of Zn converges to
N(0, 1) as n→ ∞.

8.10 Normal Populations

This section discusses three distributional results concerning normal distributions.
Let X1, . . . , Xn be a random sample from N(µ, σ2). Define, as usual, the sample
mean and variance as

X = n−1
n∑

i=1

Xi and S2
X = (n− 1)−1

n∑

i=1

(Xi −X)2.

Recall, that X and S2
X are jointly sufficient for µ and σ2. The three distributional

results are the following.

1. X ∼ N

(
µ,
σ2

n

)
.

2.
(n− 1)S2

X

σ2
∼ χ2

n−1.

3. X S2
X .

We have already verified result #1. The textbook assumes that result #3 is
true and uses results #1 and #3 to prove result #2. The argument relies on
another result; one that we already have verified:

n∑

i=1

(Xi − µ)2 =

n∑

i=1

(Xi −X)2 + n(X − µ)2.

Divide both sides by σ2 to obtain

n∑

i=1

(Xi − µ)2

σ2
=

n∑

i=1

(Xi −X)2

σ2
+
n(X − µ)2

σ2
. (8.7)

Let

Zi =
Xi − µ

σ
and let Z =

X − µ

σ/
√
n
.

Note that Zi ∼ iid N(0, 1) and that Z ∼ N(0, 1). The equality in equation 8.7 can
be written as

n∑

i=1

Z2
i =

(n− 1)S2
X

σ2
+ Z

2
.
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The left-hand-side above is distributed as χ2
n and the second term of the

right-hand-side is distributed as χ2
1. If X and S2

X are independently distributed,
then the two right-hand-side terms are independently distributed. Using the second
result at the top of page 248 in the text (see page 53 of these notes), it can be
concluded that (n− 1)S2

X/σ
2 ∼ χ2

n−1.
We will not attempt to prove result #3. It is an important result that is proven

in the graduate linear models course (Stat 505).

8.11 Updating Prior Probabilities Via Likelihood

1. Overview: This section introduces the use of Bayes rule to update
probabilities. Let H represent a hypothesis about a numerical parameter θ. In
the frequentist tradition, the hypothesis must be either true or false because
the value of θ is a fixed number. That is P (H) = 0 or P (H) = 1.

In Bayesian analyses, prior beliefs and information are incorporated by
conceptualizing θ as a realization of a random variable Θ. In this case, P (H)
can take on any value in [0, 1]. The quantity, P (H) is called the prior
probability. It represents the belief of the investigator prior to collecting new
data. One goal of Bayesian analyses is to compute the posterior probability
P (H|X = x), where X represents new data. By Bayes rule,

P (H|X = x) =
P (H,X = x)

P (X = x)

=
P (X = x|H)P (H)

P (X = x|H)P (H) + P (X = x|Hc)P (Hc)
.

The quantity P (X = x|H) is the likelihood function. The quantity P (X = x)
does not depend on H and therefore is considered a constant (conditioning on
X makes X a constant rather than a random variable). Accordingly, Bayes
rule can be written as

P (H|X = x) ∝ L(H|x)P (H).

That is, the posterior is proportional to the prior times the likelihood
function. Note, the functions P (X = x|H) and P (X = x) are either pmfs or
pdfs depending on whether X is discrete or continuous.

2. Example: The pap smear is a screening test for cervical cancer. The test is
not 100% accurate. Let X be the outcome of a pap smear:

X =

{
0 if the test is negative, and

1 if the test is positive.

Studies have shown that the false negative rate of the pap smear is
approximately 0.1625 and the false positive rate is approximately 0.1864.
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That is, 16.25% of women without cervical cancer test positive on the pap
smear and 18.64% of women with cervical cancer test negative on the pap
smear. Suppose a specific woman, say Gloria, plans to have a pap smear test.
Define the random variable (parameter) Θ as

Θ =

{
0 if Gloria does not have cervical cancer, and

1 if Gloria does have cervical cancer.

The likelihood function is

P (X = 0|Θ = 1) = 0.1625; P (X = 1|Θ = 1) = 1 − 0.1625 = 0.8375;

P (X = 0|Θ = 0) = 1 − 0.1864 = 0.8136; and P (X = 1|Θ = 0) = 0.1864.

Suppose that the prevalence rate of cervical cancer is 31.2 per 100,000 women.
A Bayesian might use this information to specify a prior probability for
Gloria, namely P (Θ = 1) = 0.000312. Suppose that Gloria takes the pap
smear test and the test is positive. The posterior probability is

P (Θ = 1|X = 1) =
P (X = 1|Θ = 1)P (Θ = 1)

P (X = 1)

=
P (X = 1|Θ = 1)P (Θ = 1)

P (X = 1|Θ = 1)P (Θ = 1) + P (X = 1|Θ = 0)P (Θ = 0))

=
(0.8375)(0.000312)

(0.1864)(0.999688) + (0.8375)(0.000312)
= 0.0014.

Note that
P (Θ = 1|X = 1)

P (Θ = 1)
=

0.0014

0.000312
= 4.488

so that Gloria is approximately four and a half times more likely to have
cervical cancer given the positive test than she did before the test, even
though the probability that she has cervical cancer is still low. The posterior
probability, like the prior probability, is interpreted as a subjective probability
rather than a relative frequency probability. A relative frequency
interpretation makes no sense here because the experiment can not be
repeated (there is only one Gloria).

3. Bayes Factor (BF): One way of summarizing the evidence about the
hypothesis H is to compute the posterior odds H divided by the prior odds H.
This odds ratio is called the Bayes Factor (BF) and it is equivalent to the
ratio of likelihood functions. Denote the sufficient statistic by T. In the pap
smear example, T = X because there is just one observation. Denote the pdfs
or pmfs of T given H or Hc by fT|H(t|H) and fT|Hc(t|Hc), respectively. The
marginal distribution of T is obtained by summing the joint distribution of T
and the hypothesis over H and Hc:

mT(t) = fT|H(t|H)P (H) + fT|Hc(t|Hc)P (Hc).
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The Posterior odds of H are

posterior Odds of H =
P (H|T = t)

1 − P (H|T = t)
=

P (H|T = t)

P (Hc|T = t)

=
fT|H(t|H)P (H)

mT(t)
÷ fT|Hc(t|Hc)P (Hc)

mT(t)

=
fT|H(t|H)P (H)

fT|Hc(t|Hc)P (Hc)
.

The prior odds of H are

Prior Odds of H =
P (H)

1 − P (H)
=

P (H)

P (Hc)
.

4. Result: The Bayes Factor is equivalent to the ratio of likelihood functions,

BF =
fT|H(t|H)

fT|Hc(t|Hc)
.

Proof:

BF =
Posterior odds of H

Prior odds of H
=
P (H|T = t)/P (Hc|T = t)

P (H)/P (Hc)

=
fT|H(t|H)P (H)

fT|Hc(t|Hc)P (Hc)
÷ P (H)

P (Hc)
=

fT|H(t|H)

fT|Hc(t|Hc)

which is the ratio of likelihood functions.

Frequentist statisticians refer to this ratio as the likelihood ratio. A Bayes
factor greater than 1 means that the data provide evidence for H relative to
Hc and a Bayes factor less than 1 means that the data provide evidence for
Hc relative to H, For the cervical cancer example, the hypothesis is Θ = 1 and
the Bayes factor is

BF =
P (X = 1|Θ = 1)

P (X = 1|Θ = 0)
=

0.8375

0.1864
= 4.493.

The above Bayes factor is nearly the same as the ratio of the posterior
probability to the prior probability of H because the prior probability is
nearly zero. In general, these ratios will not be equal.

8.12 Some Conjugate Families

1. Overview: Let X1, X2, . . . , Xn be a random sample (with or without
replacement) from a population having pdf or pmf fX(x|θ). A first step in
making inferences about θ is to reduce the data by finding a sufficient
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statistic. Let T be the sufficient statistic and denote the pdf or pmf of T by
fT|Θ(t|θ). Suppose that prior beliefs about θ can be represented as the prior
distribution gΘ(θ). By the definition of conditional probability, the posterior
distribution of Θ is

gΘ|T(θ|t) =
fΘ,T(θ, t)

mT(t)
=
fT|Θ(t|θ) gΘ(θ)

mT(t)
,

where mT(t) is the marginal distribution of T which can be obtained as

mT(t) =

∫
fT,Θ(t, θ) dθ

=

∫
fT|Θ(t|θ)gΘ(θ) dθ.

Integration should be replaced by summation if the prior distribution is
discrete.

In practice, obtaining an expression for the marginal distribution of T may be
unnecessary. Note that mT(t) is just a constant in the posterior distribution.
Accordingly, the posterior distribution is

gΘ|T(θ|t) ∝ L(θ|t) gΘ(θ) because L(θ|t) ∝ fT|Θ(t|θ). (8.8)

2. The kernel of a pdf or pmf is proportional to the pmf or pdf and is the part of
the function that depends on the random variable. That is, the kernel is
obtained by deleting any multiplicative terms that do not depend on the
random variable. The right-hand-side of equation (8.8) contains the kernel of
the posterior. If the kernel can be recognized, then the posterior distribution
can be obtained without first finding the marginal distribution of T.

The kernels of some well-known distributions are given below.

(a) If Θ ∼ Unif(a, b), then the kernel is I(a,b)(θ).

(b) If Θ ∼ Expon(λ), then the kernel is e−λθI(0,∞)(θ).

(c) If Θ ∼ Gamma(α, λ), then the kernel is θα−1e−λθI(0,∞)(θ).

(d) If Θ ∼ Poi(λ), then the kernel is
λθ

θ!
I{0,1,2,...}(θ).

(e) If Θ ∼ Beta(α, β), then the kernel is θα−1(1 − θ)β−1I(0,1)(θ).

(f) If Θ ∼ N(µ, σ2), then the kernel is e−
1

2σ2 (θ2−2θµ).

3. Conjugate Families: A family of distributions is conjugate for a likelihood
function if the prior and posterior distributions both are in the family.

4. Example 1. Consider the problem of making inferences about a population
proportion, θ. A random sample X1, X2, . . . , Xn will be obtained from a
Bernoulli(θ) population. By sufficiency, the data can be reduced to Y =

∑
Xi,
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and conditional on Θ = θ, the distribution of Y is Y ∼ Bin(n, θ) One natural
prior distribution for Θ is Beta(α, β). Your textbook gives plots of several
beta pdfs on page 356. The lower left plot is not correct. The beta parameters
must be greater than zero. The limiting distribution as α and β go to zero is

lim
α→0,β→0

θα−1(1 − θ)β−1

B(α, β)
=

{
1
2

θ ∈ {0, 1}
0 otherwise.

The parameter α− 1 can be conceptualized as the number of prior successes
and β − 1 can be conceptualized as the number of prior failures.

(a) Prior:

gΘ(θ|α, β) =
θα−1(1 − θ)β−1

B(α, β)
I(0,1)(θ).

(b) Likelihood Function:

fY |Θ(y|θ) =

(
n

y

)
θy(1 − θ)n−yI{0,1,...,n}(y) and

L(θ|y) = θy(1 − θ)n−y.

(c) Posterior:

gΘ|Y (θ|α, β, y) ∝ θy(1 − θ)n−y θ
α−1(1 − θ)β−1

B(α, β)
I(0,1)(θ).

The kernel of the posterior is θy+α−1(1 − θ)n−y+β−1. Accordingly, the
posterior distribution is Beta(y + α, n− y + β). Note that the posterior
mean (a point estimator) is

E(Θ|Y = y) =
y + α

n+ α + β
.

(d) Note that both the prior and posterior are beta distributions.
Accordingly, the beta family is conjugate for the binomial likelihood.

5. Example 2. Consider the problem of making inferences about a population
mean, θ, when sampling from a normal distribution having known variance,
σ2. By sufficiency, the data can be reduced to X. One prior for Θ is N(ν, τ 2).

(a) Prior:

gΘ(θ|ν, τ) =
e−

1
2τ2 (θ−ν)2

√
2πτ 2

.

(b) Likelihood Function:

fX |Θ(x̄|θ, σ2) =
exp{− n

2σ2
(x̄− θ)2}

√
2π
σ2

n

and

L(θ|x) = e−
n

2σ2 (θ2−2x̄θ).
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(c) Posterior:

gΘ|X(θ|σ, ν, τ, x̄) ∝ e−
1

2τ2 (θ−ν)2

√
2πτ 2

e−
n

2σ2 (θ2−2x̄θ).

The combined exponent, after dropping multiplicative terms that do not
depend on θ is

−1

2

{
n

σ2
(θ2 − 2θx̄) +

1

τ 2
(θ2 − 2θν)

}

= −1

2

(
n

σ2
+

1

τ 2

){
θ2 − 2θ

(
n

σ2
+

1

τ 2

)−1 ( x̄n
σ2

+
ν

τ 2

)
+ C

}

= −1

2

(
n

σ2
+

1

τ 2

){
θ −

(
n

σ2
+

1

τ 2

)−1 ( x̄n
σ2

+
ν

τ 2

)}2

+ C∗,

where C and C∗ are terms that do not depend on θ. Note, we have
“completed the square.” This is the kernel of a normal distribution with
mean and variance

E(Θ|x̄) =

(
n

σ2
+

1

τ 2

)−1 ( x̄n
σ2

+
ν

τ 2

)
and Var(Θ|x̄) =

(
n

σ2
+

1

τ 2

)−1

(d) Note that both the prior and the posterior are normal distributions.
Accordingly, the normal family is conjugate for the normal likelihood
when σ2 is known.

(e) Precision. An alternative expression for the posterior mean and variance
uses what is called the precision of a random variable. Precision is
defined as the reciprocal of the variance. Thus, as the variance increases,
the precision decreases. Your textbook uses the symbol π to stand for
precision. For this problem

πX =
n

σ2
, πΘ =

1

τ 2
, and πΘ|X =

n

σ2
+

1

τ 2
= πX + πΘ.

That is, the precision of the posterior is the sum of the precision of the
prior plus the precision of the data. Using this notation, the posterior
mean and variance are

E(Θ|x̄) =
πX

πX + πΘ

x̄+
πΘ

πX + πΘ

ν and Var(Θ|x̄) = (πX + πΘ)−1 .

Note that the posterior mean is a weighted average of the prior mean and
that data mean.

8.13 Predictive Distributions

1. The goal in this section is to make predictions about future observations,
Y1, Y1, . . . , Yk. We may have current observations X1, X1, . . . , Xn to aid us.
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2. Case I: No data available. If the value of θ is known, then the predictive
distribution is simply the pdf (or pmf), f

Y|θ(y|θ). In most applications θ is

not known. The Bayesian solution is to integrate θ out of the joint
distribution of (Θ,Y). That is, the Bayesian predictive distribution is

fY(y) = EΘ

[
fY|Θ(y|θ)

]

=

∫
fY|Θ(y|θ)gΘ(θ) dθ,

where gΘ(θ) is the prior distribution of Θ. Replace integration by summation
if the distribution of Θ is discrete.

3. Case II: Data available. Suppose that X1, X2, . . . , Xn has been observed from
fX|Θ(x|θ). Denote the sufficient statistic by T and denote the pdf (pmf) of T
given θ by fT|Θ(t|θ). The Bayesian posterior predictive distribution is given
by

fY|T(y|t) = EΘ|T

[
fY|Θ(y|θ)

]

=

∫
fY|Θ(y|θ)gΘ|T(θ|t) dθ,

where gΘ|T(θ|t) is the posterior distribution of Θ. Replace integration by
summation if the distribution of Θ is discrete. The posterior distribution of Θ
is found by Bayes rule

gΘ|T(θ|t) ∝ L(θ|t)gΘ(θ).

4. Example of case I. Consider the problem of predicting the number of successes
in k Bernoulli trials. Thus, conditional on Θ = θ, the distribution of the sum
of the Bernoulli random variables is Y ∼ Bin(k, θ). The probability of success,
θ is not known, but suppose that the prior belief function can be represented
by a beta distribution. Then the Bayesian predictive distribution is

fY (y) =

∫ 1

0

(
k

y

)
θy(1 − θ)k−y θ

α−1(1 − θ)β−1

B(α, β)
dθ

=

(
k

y

)
B(α+ y, β + k − y)

B(α, β)
I{0,1,...,k}(y).

This predictive pmf is known as the beta-binomial pmf. It has expectation

E(Y ) = EΘ [E(Y |Θ)] = EΘ(kΘ) = k
α

α+ β
.

For example, suppose that the investigator has no prior knowledge and
believes that Θ is equally likely to be anywhere in the (0, 1) interval. Then an
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appropriate prior is Beta(1, 1), the uniform distribution. The Bayesian
predictive distribution is

fY (y) =

(
k

y

)
B(1 + y, 1 + k − y)

B(1, 1)
I{0,1,...,k}(y) =

1

k + 1
I{0,1,...,k}(y)

which is a discrete uniform distribution with support {0, 1, . . . , k}. The
expectation of Y is E(Y ) = k/2.

5. Example of case II. Consider the problem of predicting the number of
successes in k Bernoulli trials. Thus, conditional on Θ = θ, the distribution of
the sum of the Bernoulli random variables is Y ∼ Bin(k, θ). A random sample
of size n from Bern(θ) has been obtained. The sufficient statistic is T =

∑
Xi

and T ∼ Bin(n, θ). The probability of success, θ is not known, but suppose
that the prior belief function can be represented by a beta distribution. Then
the posterior distribution of Θ is

gΘ|T (θ|t) ∝
(
n

t

)
θt(1 − θ)n−t θ

α−1(1 − θ)β−1

B(α, β)
.

By recognizing the kernel, it is clear that the posterior distribution of Θ is
beta(t+ α, n− t+ β). The Bayesian posterior predictive distribution is

fY |T (y|t) =

∫ 1

0

(
k

y

)
θy(1 − θ)k−y θ

t+α−1(1 − θ)n−t+β−1

B(t + α, n− t + β)
dθ

=

(
k

y

)
B(α + t+ y, β + n− t+ k − y)

B(t + α, n− t+ β)
I{0,1,...,k}(y).

This is another beta-binomial pmf. It has expectation

E(Y ) = EΘ [E(Y |Θ)] = EΘ(kΘ) = k
α + t

n + α + β
.

For example, suppose that the investigator has no prior knowledge and
believes that Θ is equally likely to be anywhere in the (0, 1) interval. Then an
appropriate prior is Beta(1, 1), the uniform distribution. One Bernoulli
random variable has been observed and its value is x = 0. That is, the data
consist of just one failure; n = 1, t = 0. The posterior distribution of Θ is
Beta(1, 2) and the Bayesian posterior predictive distribution is

fY |T (y|t) =

(
k

y

)
B(1 + y, 2 + k − y)

B(1, 1)
I{0,1,...,k}(y) =

2(k + 1 + y)

(k + 1)(k + 2)
I{0,1,...,k}(y).

The expectation of Y is E(Y ) = k/3.



Chapter 9

ESTIMATION

9.1 Errors in Estimation

1. Estimator versus Estimate: An estimator of a population parameter, say θ, is
a function of the data and is a random variable. An estimate is a realization of
the random variable.

2. Variance and Bias: Let T = T (X) be an estimator of θ. The bias of T is
bT = E(T − θ) = E(T )− θ. If bT = 0, then T is unbiased for θ. The variance of
T is σ2

T = E(T − µT )2, where µT = E(T ).

3. Mean Square Error: The mean square error of T is
MSET (θ) = E(T − θ)2 = E [(T − θ)2].

4. Result: MSET (θ) = Var(T ) + b2T .

Proof:

MSET (θ) = E[(T − µT ) + (µT − θ)]2

= E[(T − µT )2 + 2(T − µT )(µT − θ) + (µT − θ)2]

= E(T − µT )2 + 2(µT − θ)E(T − µT ) + (µT − θ)2

= Var(T ) + b2T .

5. Root Mean Square Error: RMSET (θ) =
√
MSET (θ).

6. Example: Sample Variance. Let X1, . . . , Xn be a random sample from
N(µ, σ2). Compare two estimators of σ2:

S2 =
1

n− 1

n∑

i=1

(Xi −X)2 and V =
1

n

n∑

i=1

(Xi −X)2.

We know that S2 is unbiased for σ2 (this result does not depend on
normality). Therefore

bS2 = 0 and bV = E

(
n− 1

n
S2

)
− σ2 = −σ

2

n
.

105
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Recall that (n− 1)S2/σ2 ∼ χ2
n−1. Therefore

Var

[
n∑

i=1

(Xi −X)2

]
= Var

(
σ2χ2

n−1

)
= σ42(n− 1)

because Var(χ2
n−1) = 2(n− 1). The MSEs of S2 and V are

MSES2(σ2) = Var(S2) =
2(n− 1)σ4

(n− 1)2
=

2σ4

n− 1
and

MSEV (σ2) = Var(V ) + b2V =
2(n− 1)σ4

n2
+
σ4

n2

=
(2n− 1)σ4

n2
=

2σ4

n− 1

(
1 − 3n− 1

2n2

)
.

Note that MSES2(σ2) > MSEV (σ2) even though S2 is unbiased and V is
biased.

7. Standard Error: An estimator (or estimate) of the standard deviation of an
estimator is called the standard error of the estimator.

8. Example of standard errors: In the following table, f =
n− 1

N − 1
.

Parent Param- Estim-
Distribution eter ator (T ) Var(T ) SE(T )
Any,
Sampling w
replacement

µ X
σ2

n

S√
n

Bernoulli,
Sampling w
replacement

p p̂
p(1 − p)

n

√
p̂(1 − p̂)

n− 1

Any finite pop.,
Sampling w/o
replacement

µ X
σ2

n
(1 − f)

√
S2

n
(1 − f)

Finite Bern.,
Sampling w/o
replacement

p p̂
p(1 − p)

n
(1 − f)

√
p̂(1 − p̂)

n− 1

(
1 − n

N

)

Normal σ2 S2 2σ4

n− 1
S2
√

2
n−1

9.2 Consistency

1. Chebyshev’s Inequality: Suppose that X is a random variable with pdf or pmf
fX(x). Let h(X) be a non-negative function of X whose expectation exists
and let k be any positive constant. Then

P [h(X) ≥ k] ≤ E [h(X)]

k
.



9.2. CONSISTENCY 107

Proof: Suppose that X is a continuous rv. Let R be the set
R = {x; x ∈ SX ; h(x) ≥ k}. Then

E [h(X)] =

∫

SX

h(x)fX(x) dx ≥
∫

R

h(x)fX(x) dx

≥ k

∫

R

fX(x) dx = kP [h(X) ≥ k]

=⇒ E [h(X)]

k
≥ P [h(X) ≥ k] .

If X is discrete, then replace integration by summation. A perusal of books in
my office reveals that Chebyshev’s inequality also is known as

(a) Tchebichev’s inequality (Roussas, Introduction to Probability and

Statistical Inference, 2003, Academic Press),

(b) Tchebysheff’s theorem (Mendenhall et al., A Brief Introduction to

Probability and Statistics, 2002, Duxbury; Freund & Wilson, Statistical

Methods, 2003, Academic Press),

(c) Tchebychev’s inequality (Schervish, Theory of Statistics, 1995,
Springer-Verlag),

(d) Chebychev’s inequality (Casella & Berger, Statistical Inference, 2002,
Duxbury), and

(e) possibly other variants.

2. Application 1: Suppose that E(X) = µX and Var(X) = σ2
X <∞. Then

P

[ |X − µX |2
σ2

X

≥ k2

]
≤ 1

k2
.

Proof: Choose h(X) to be

h(X) =
(X − µX)2

σ2
X

.

By the definition of Var(X), it follows that E [h(X)] = 1. Also,

P

[ |X − µX |
σX

≥ k

]
= P [|X − µX | ≥ kσX ]

= P

[ |X − µX |2
σ2

X

≥ k2

]
≤ 1

k2
by Chebyshev

=⇒ P [|X − µX | < kσX ] ≥ 1 − 1

k2
.
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3. Application 2: Suppose that T is a random variable (estimator of the
unknown parameter θ) with E(T ) = µT and Var(T ) = σ2

T <∞. Then

P [|X − θ| < ε] ≥ 1 − MSEX(θ)

ε2
,

Proof: Choose h(X) to be

h(X) = (X − θ)2.

Then E [h(T )] = MSET (θ) and

P [|T − θ| ≥ ε] = P
[
|T − θ|2 ≥ ε2

]

≤ MSET (θ)

ε2
by Chebyshev

=
σ2

T + [E(T ) − θ]2

ε2

=⇒ P [|T − θ| < ε] ≥ 1 − MSET (θ)

ε2
.

4. Consistency Definition: A sequence of estimators, {Tn}, is consistent for θ if

lim
n→∞

P [|Tn − θ| < ε] = 1

for every ε > 0.

5. Converge in Probability Definition: A sequence of estimators, {Tn}, converges
in probability to θ if the sequence is consistent for θ. Convergence in
probability is usually written as

Tn
prob−→ θ.

6. Law of Large Numbers If X is the sample mean based on a random sample of
size n from a population having mean µX , then

X
prob−→ µX .

We will prove the law of large numbers for the special case in which the
population variance is finite (see # 9 below). The more general result when
the population variance is infinite is sometimes called Khintchine’s Theorem.

7. Mean Square Consistent Definition: An estimator of θ is mean square
consistent if

lim
n→∞

MSETn(θ) = 0.
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8. Result: If an estimator is mean square consistent, then it is consistent.

Proof: Let Tn be an estimator of θ. Assume that Tn has finite mean and
variance. Then it follows from Chebyshev’s Theorem that

P [|Tn − θ| < ε] ≥ 1 − MSETn(θ)

ε2
,

where ε is any positive constant. In Tn, is mean square consistent for θ, then

lim
n→∞

P [|Tn − θ| < ε] ≥ lim
n→∞

1 − MSETn(θ)

ε2
= 1

because lim
n→∞

MSETn(θ)

ε2
= 0

for any ε > 0.

9. Application: The sample mean based on a random sample of size n from a
population with finite mean and variance has mean µX and variance σ2

X/n.
Accordingly,

MSEX(µX) =
σ2

X

n
and lim

n→∞
MSEX(µX) = 0

which reveals that X is mean square consistent. It follows from the result in

(8), that X
prob−→ µX .

9.3 Large Sample Confidence Intervals

1. General setting: Suppose that Tn is an estimator of θ and that

lim
n→∞

P

[
Tn − θ

σTn

≤ c

]
= Φ(c).

That is, Tn∼̇ N(θ, σ2
Tn

) provided that sample size is sufficiently large. Suppose
that σ2

Tn
= ω2/n and that W 2

n is a consistent estimator of ω2. That is,

STn = SE(Tn) = Wn/
√
n and W 2

n

prob−→ ω2. Then, it can be shown that

lim
n→∞

P

[
Tn − θ

STn

≤ c

]
= Φ(c).

We will not prove the above result. It is an application of Slutsky’s theorem
which is not covered in Stat 424..

2. Constructing a confidence interval: Denote the 100(1 − α/2) percentile of the
standard normal distribution by zα/2. That is

Φ−1(1 − α/2) = zα/2.
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Then, using the large sample distribution of Tn, it follows that

P

[
−zα/2 ≤

Tn − θ

STn

≤ zα/2

]
≈ 1 − α.

Using simple algebra to manipulate the three sides of the above equation yields

P
[
Tn − zα/2STn ≤ θ ≤ Tn + zα/2STn

]
≈ 1 − α.

The above random interval is a large sample 100(1 − α)% confidence interval
for θ. The interval is random because Tn and STn are random variables.

3. Interpretation of the interval: Let tn and sTn be realizations of Tn and STn.
Then

(tn − zα/2sTn , tn + zα/2sTn)

is a realization of the random interval. We say that we are 100(1 − α)%
confident that the realization captures the parameter θ. The 1 − α probability
statement applies to the interval estimator, but not to the interval estimate
(i.e., a realization of the interval).

4. Example 1: Confidence interval for µX . Let X1, . . . , Xn be a random sample of
size n from a population having mean µX and variance σ2

X . If sample size is
large, then X ∼̇ N (µX , σ

2
X/n) by the CLT. The estimated variance of X is

S2
X

= S2
X/n. It can be shown that

Var(S2
X) =

2σ4
X

n− 1

[
1 +

(n− 1)κ4

2n

]
,

where κ4 is the standardized kurtosis of the parent distribution. Recall, that if
X is normal, then κ4 = 0. If κ4 is finite, then Chebyshev’s inequality reveals

that S2
X

prob−→ σ2. It follows that SX
prob−→ σ. Accordingly

lim
n→∞

P

[
X − µX

SX/
√
n

≤ c

]
= Φ(c)

and

P

[
X − zα/2

SX√
n
≤ µX ≤ X + zα/2

SX√
n

]
≈ 1 − α.

5. Example 2: Confidence interval for a population proportion, p. Let X1, . . . , Xn

be a random sample of size n from Bern(p). If sample size is large, then
p̂ ∼̇ N (p, p(1 − p)/n) by the CLT. The usual estimator of σ2

X is VX = p̂(1− p̂).

We know that p̂
prob−→ p (by the law of large numbers). It follows that

p̂(1 − p̂)
prob−→ p(1 − p) and, therefore, VX = p̂(1 − p̂) is consistent for σ2

X .
Accordingly

lim
n→∞

P

[
p̂− p√

p̂(1 − p̂)/n
≤ c

]
= Φ(c)
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and

P

[
p̂− zα/2

√
p̂(1 − p̂)

n
≤ p ≤ p̂+ zα/2

√
p̂(1 − p̂)

n

]
≈ 1 − α.

9.4 Determining Sample Size

1. Margin of Error Suppose that, for large n, Tn ∼̇ N(θ, ω2/n) and that ω2 is
known. The large sample 100(1 − α)% confidence interval for θ is

Tn ±Mα, where Mα = zα/2
ω√
n
.

The quantity Mα is 1
2

of the confidence interval width and is called the margin
of error.

2. Choosing n: Suppose that the investigator would like to estimate θ to within
±m with confidence 100(1 − α)%. The required sample size is obtained by
equating m to Mα and solving for n. The solution is

n =
(zα/2ω

m

)2

.

If the solution is not an integer, then round up.

3. Application 1: Let X1, . . . , Xn be a random sample from a distribution with
unknown mean µX and known variance σ2

X . If n is large, then
X ∼̇ N(µX , σ

2
X/n) by the CLT. To estimate µX to within ±m with

100(1 − α)% confidence, use sample size

n =
(zα/2σX

m

)2

.

4. Application 2: Let X1, . . . , Xn be a random sample from a distribution with
unknown mean µX and unknown variance σ2

X . If n is large, then
X ∼̇ N(µX , σ

2
X/n). The investigator desires to estimate µX to within ±m with

100(1 − α)% confidence. To make any progress, something must be known
about σX . If the likely range of the data is known, then a rough estimate of
σX is the range divided by four. Another approach is to begin data collection
and then use SX to estimate σX after obtaining several observations. The
sample size formula can be used to estimate the number of additional
observations that must be taken. The sample size estimate can be updated
after collecting more data are re-estimating σX .

5. Application 3: Let X1, . . . , Xn be a random sample from a Bern(p)
distribution. If n is large, then p̂ ∼̇ N(p, p(1 − p)/n) by the CLT. To estimate
p to within ±m with 100(1 − α)% confidence, it would appear that we should
use sample size

n =

(
zα/2

√
p(1 − p)

m

)2

.
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The right-hand-side above, however, cannot be computed because p is
unknown and, therefore, p(1 − p) also is unknown. Note that p(1 − p) is a
quadratic function that varies between 0 (when p = 0 or p = 1) and 0.25 (when
p = 0.5). A conservative approach is to use p(1 − p) = 0.25 in the sample size
formula. This approach ensures that the computed sample size is sufficiently
large, but in most cases it will be larger than necessary. If it is known that
p > p0 or that p < p0, then p0 may be substituted in the sample size formula.

9.5 Small Sample Confidence Intervals for µX

1. Setting: Let X1, . . . , Xn be a random sample from N(µX , σ
2
X), where neither

the mean nor the variance is known. It is desired to construct a 100(1 − α)%
confidence interval for µX . If n is small, then the large sample procedure will
not work well because SX may differ substantially from σX .

2. Solution: Consider the random variable

T =
X − µX

SX/
√
n

=
X − µX

σX/
√
n

× σ

SX

=
X − µX

σX/
√
n

÷
(

(n− 1)S2
X

σ2(n− 1)

) 1
2

.

Recall that

X − µX

σX/
√
n

∼ N(0, 1),
(n− 1)S2

X

σ2
∼ χ2

n−1, and

X − µX

σX/
√
n

(n− 1)S2
X

σ2
.

The independence result follows from X S2
X . Accordingly, the random

variable T has the same distribution as the ratio Z/
√
W/(n− 1) where

Z ∼ N(0, 1) and W ∼ χ2
n−1. This quantity has a t distribution with n− 1

degrees of freedom.

3. Solution to the problem. Let tα/2,n−1 be the 100(1 − α/2) percentile of the
tn−1 distribution. That is F−1

T (1 − α/2) = tα/2,n−1, where FT ( · ) is the cdf of
T . Then, using the symmetry of the t distribution around 0, it follows that

P

(
−tα/2,n−1 ≤ X − µX

σX/
√
n

≤ tα/2,n−1

)
= 1 − α.

Algebraic manipulation reveals that

P

[
X − tα/2,n−1

SX√
n
≤ µX ≤ X + tα/2,n−1

SX√
n

]
= 1 − α.
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Accordingly, an exact 100(1 − α)% confidence interval for µX is

X ± tα/2,n−1
SX√
n
.

4. Caution: The above confidence interval is correct if one is sampling from a
normal distribution. If sample size is small and skewness or kurtosis is large,
then the true confidence can differ substantially from 100(1 − α)%.

9.6 The Distribution of T

Recall that if Z ∼ N(0, 1), Y ∼ χ2
k and Z Y , then

T =
Z√

Y
k

∼ tk.

In this section, we will derive the pdf of T .
The strategy that we will use is (a) first find an expression for the cdf of T and

then (b) differentiate the cdf to obtain the pdf. The cdf of T is

P (T ≤ t) = FT (t) = P


 Z√

Y
k

≤ t




= P

[
Z ≤ t

√
Y

k

]
=

∫ ∞

0

∫ t
√

y/k

−∞

fZ(z)fY (y)dz dy

using fZ,Y (z, y) = fZ(z)fY (y) which follows from Y Z. Using Leibnitz’s rule, the
pdf of T is

fT (t) =
d

dt
FT (t) =

∫ ∞

0

d

dt

∫ t
√

y/k

−∞

fZ(z)fY (y)dz dy

=

∫ ∞

0

√
y/kfZ

(
t
√
y/k
)
fY (y)dy.

Substituting the pdfs for Z and Y yields

fT (t) =

∫ ∞

0

√
y/k

e−
1
2

t2

k
yy

k
2
−1e−

1
2
y

√
2π Γ

(
k

2

)
2

k
2

dy =

∫ ∞

0

y
k+1
2

−1e
− 1

2

“
t2

k
+1

”
y

√
kπ Γ

(
k

2

)
2

k+1
2

dy

=

Γ

(
k + 1

2

)

Γ

(
k

2

)√
kπ

(
t2

k
+ 1

) k+1
2

I(−∞,∞)(t).
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The last integral is evaluated by recognizing the kernel of a gamma distribution.
That is, ∫ ∞

0

yα−1e−λyλα

Γ(α)
dy = 1 ⇐⇒

∫ ∞

0

yα−1e−λydy =
Γ(α)

λα
.

9.7 Pivotal Quantities

1. Definition: A pivotal quantity is a function of a statistic and a parameter.
The distribution of the pivotal quantity does not depend on any unknown
parameters.

2. How to construct confidence intervals. Suppose that Q(T; θ) is a pivotal
quantity. The distribution of Q is known, so percentiles of Q can be
computed. Let q1 and q2 be percentiles that satisfy

P [q1 ≤ Q(T; θ) ≤ q2] = 1 − α.

If Q(T; θ) is a monotonic increasing or decreasing function of θ for each
realization of T, then the inverse function Q−1 [Q(T; θ)] = θ exists, and

P
[
Q−1(q1) ≤ θ ≤ Q−1(q2)

]
= 1 − α

if Q(T; θ) is an increasing function of θ and

P
[
Q−1(q2) ≤ θ ≤ Q−1(q1)

]
= 1 − α

if Q(T; θ) is a decreasing function of θ.

3. Example 1: Suppose that X1, . . . , Xn is a random sample from N(µ, σ2).

(a) Q(X,SX ;µ) =
X − µ

SX/
√
n
∼ tn−1 which reveals that Q is a pivotal quantity.

Note that

T =

(
X
SX

)

is two-dimensional. Also, Q is a decreasing function of µ,

Q−1(Q) = X − SX√
n
Q = µ and

P

[
X − SX√

n
q2 ≤ X − SX√

n
q1

]
= 1 − α,

where q1 and q2 are appropriate percentiles of the tn−1 distribution.

(b) Q(S2
X ; σ2) =

(n− 1)S2
X

σ2
∼ χ2

n−1 which reveals that Q is a pivotal

quantity. Furthermore, Q is a decreasing function of σ,

Q−1(Q) =

√
(n− 1)S2

X

Q
= σ and
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P



√

(n− 1)S2
X

q2
≤ σ ≤

√
(n− 1)S2

X

q1


 = 1 − α,

where q1 and q2 are appropriate percentiles of the χ2
n−1 distribution.

4. Example 2: Suppose that X1, . . . , Xn is a random sample from Unif(0, θ). It is
easy to show that X(n) is sufficient statistic. Note that Xi/θ ∼ Unif(0, 1).
Accordingly, X(n)/θ is distributed as the largest order statistic from a
Unif(0, 1) distribution. That is, Q(X(n); θ) = X(n)/θ ∼ Beta(n, 1) which
reveals that Q is a pivotal quantity. Furthermore, Q is a decreasing function
of θ,

Q−1(Q) =
X(n)

Q
= θ and

P

[
X(n)

q2
≤ θ ≤ X(n)

q1

]
= 1 − α,

where q1 and q2 are appropriate percentiles of the Beta(n, 1) distribution.

(a) Note, q2 = 1 is the 100th percentile of Beta(n, 1) and q1 = α1/n is the
100α percentile of Beta(n, 1). Accordingly, a 100(1 − α) confidence
interval for θ can be based on

P

[
X(n) ≤ θ ≤ X(n)

α1/n

]
= 1 − α.

(b) Note, q1 = 0 is the 0th percentile of Beta(n, 1) and q2 = (1 − α)1/n is the
100(1 − α) percentile of Beta(n, 1). Accordingly, a 100(1 − α) one-sided
confidence interval for θ can be based on

P

[
X(n)

(1 − α)1/n
≤ θ ≤ ∞

]
= 1 − α.

9.8 Estimating a Mean Difference

1. Setting: Suppose that T1,n1 ∼̇ N(θ1, ω
2
1/n1); T2,n2 ∼̇ N(θ2, ω

2
2/n2); and

T1,n1 T2,n2 . The goal is to construct a confidence interval for θ1 − θ2. Note
that

T1,n1 − T2,n2 ∼̇ N

(
θ1 − θ2,

ω2
1

n1
+
ω2

2

n2

)
.

If W 2
1 and W 2

2 are consistent estimators of ω2
1 and ω2

2 (i.e., W 2
1

prob−→ ω2
1 and

W 2
2

prob−→ ω2
2), then

(T1,n1 − T2,n2) − (θ1 − θ2)√
W 2

1

n1
+

W 2
2

n2

∼̇ N(0, 1).
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A large sample 100(1 − α)% confidence interval for θ1 − θ2 can be based on

P
[
T1,n1 − T2,n2 − zα/2SE ≤ θ1 − θ2 ≤ T1,n1 − T2,n2 + zα/2SE

]
≈ 1 − α,

where SE = SE(T1,n1 − T2,n2) =

√
W 2

1

n1

+
W 2

2

n2

.

2. Application 1: Suppose that X11, X12, . . . , X1n1 is a random sample from a
population having mean µ1 and variance σ2

1 and that X21, X22, . . . , X2n1 is an
independent random sample from a population having mean µ2 and variance
σ2

2. Then
(X1 −X2) − (µ1 − µ2)√

S2
1

n1
+

S2
2

n2

∼̇ N(0, 1).

A large sample 100(1 − α)% confidence interval for µ1 − µ2 can be based on

P


X1 −X2 − zα/2

√
S2

1

n1
+
S2

2

n2
≤ µ1 − µ2 ≤ X1 −X2 + zα/2

√
S2

1

n1
+
S2

2

n2




≈ 1 − α.

3. Application 2: Suppose that X11, X12, . . . , X1n1 is a random sample from
Bern(p1) and that X21, X22, . . . , X2n1 is an independent random sample from
Bern(p2). Then

(p̂1 − p̂2) − (p1 − p2)√
p̂1(1−p̂1)

n1
+ p̂2(1−p̂2)

n2

∼̇ N(0, 1).

A large sample 100(1 − α)% confidence interval for p1 − p2 can be based on

P
[
p̂1 − p̂2 − zα/2SE ≤ p1 − p2 ≤ p̂1 − p̂2 + zα/2SE

]
≈ 1 − α, where

SE = SE(p̂1 − p̂2) =

√
p̂1(1 − p̂1)

n1
+
p̂2(1 − p̂2)

n2
.

9.9 Estimating Variability

Most of this section is a review of earlier material. The only new material is
concerned with the distribution of the sample range when sampling from N(0, 1).

1. Let X1, X2, . . . , Xn be a random sample from N(µ, σ2). Define Zi as
Zi = (Xi − µ)/σ. Then Zi ∼ iid N(0, 1). Note that the joint distribution of
Z1, . . . , Zn does not depend on µ or σ. Accordingly, the distribution of

RZ = Z(n) − Z(1) =
X(n) − µ

σ
− X(1) − µ

σ
=
X(n) −X(1)

σ
=
RX

σ

does not depend on µ or σ. That is, RX/σ is a pivotal quantity.
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2. Percentiles of W = RX/σ for various sample sizes are listed in Table XIII.
They can be used to make probability statements such as

P (w1 ≤ W ≤ w2) = 1 = α,

where w1 and w2 are appropriate percentiles of the distribution of W . Note
that W is a decreasing function of σ and that
W−1(W ) = (X(n) −X(1))/W = σ. Therefore, confidence intervals can be based
on

P

[
X(n) −X(1)

w2

≤ σ ≤ X(n) −X(1)

w1

]
= 1 − α.

3. Table XIII also gives E(W ) and σW . These values can be used to obtain a
point estimator of σ and to compute the standard error of the estimator. The
point estimator is

σ̂ =
X(n) −X(1)

E(W )
.

The estimator σ̂ is unbiased for σ because

E(σ̂) =
E(RX)

E(W )
=
σE(RX)

E(RX)
= σ.

The variance of σ̂ is

Var(σ̂) = Var

(
RX

E(W )

)
= Var

(
σW

E(W )

)

= σ2 Var(W )

[E(W )]2
.

Accordingly,

SE(σ̂) = σ̂
σW

E(W )

is an estimator of
√

Var(σ̂).

9.10 Deriving Estimators

1. Method of Moments

(a) Setting: Suppose that Xi, X2, . . . , Xn is a random sample from fX(x|θ),
where θ is a k × 1 vector of parameters. The goal is to derive an
estimator of θ.

(b) Let M ′
j be the jth sample moment about the origin and let µ′

j be the
corresponding population moment. That is

M ′
j =

1

n

n∑

i=1

Xj
i and µ′

j = µ′
j(θ) = E(Xj)

for j = 1, 2, . . .. The population moments are denoted by µ′
j(θ) because

they are functions of the components of θ.
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(c) The method of moments estimator consists of equating sample moments
to population moments and solving for θ. That is, solve

M ′
j = µ′

j(θ̂), j = 1, . . . , k

for θ̂.

(d) Central Moments: It sometimes is more convenient to use central
moments. For the special case of k = 2, solve

Mj = µj(θ̂), j = 1, 2 where

M1 = M ′
1 =

1

n

n∑

i=1

Xi; M2 = S2
X =

1

n− 1

n∑

i=1

(Xi −X)2;

µ1 = µ′
1 = E(X); and µ2 = σ2

X = E(X − µ1)
2.

(e) Example: Gamma Distribution. Suppose X1, . . . , Xn is a random sample
from Gamma(α, λ). The moments about the origin are

µ′
j(θ) = E(Xj) =

Γ(α + j)

Γ(α)λj
.

The first two central moments are

µ1(θ) = E(X) =
α

λ
and µ2(θ) = Var(X) =

α

λ2
.

The method of moments estimators of α and λ are obtained by solving

X =
α̂

λ̂
and S2

X =
α̂

λ̂2

for α̂ and λ̂. The solutions are

α̂ =
X

2

S2
X

and λ̂ =
X

S2
X

.

(f) Example: Beta Distribution. Suppose X1, . . . , Xn is a random sample
from Beta(α1, α2). The moments about the origin are

µ′
j(θ) = E(Xj) =

B(α1 + j, α2)

B(α1, α2)
=

Γ(α1 + j)Γ(α1 + α2)

Γ(α1)Γ(α1 + α2 + j)
.

The first two central moments are

µ1(θ) = E(X) =
α1

α1 + α2

and

µ2(θ) = Var(X) =
α1α2

(α1 + α2)2(α1 + α2 + 1)
.



9.10. DERIVING ESTIMATORS 119

The method of moments estimators of α1 and α2 are obtained by solving

X =
α̂1

α̂1 + α̂2

and S2
X =

α̂1α̂2

(α̂1 + α̂2)2(α̂1 + α̂2 + 1)

for α̂1 and α̂2. The solutions are

α̂1 = X

[
X(1 −X)

S2
X

− 1

]
and α̂2 = (1 −X)

[
X(1 −X)

S2
X

− 1

]
.

2. Maximum Likelihood Estimators (MLEs)

(a) Setting: Suppose that Xi, X2, . . . , Xn is a random sample from fX(x|θ),
where θ is a k × 1 vector of parameters. The goal is to derive an
estimator of θ.

(b) Definition: A maximum likelihood estimator (MLE) of θ is any value θ̂

that maximizes the likelihood function and is a point in the parameter
space or on the boundary of the parameter space.

(c) If the likelihood function is a differentiable function of θ, then the
maximum likelihood estimator is a solution to

∂L(θ|X)

∂θ

∣∣∣∣∣
θ=θ̂

= 0.

(d) Note, any maximizer of L(θ|X) also is a maximizer of ln [L(θ|X)].
Accordingly, one can maximize the log likelihood function rather than
the likelihood function.

(e) Example: Suppose that X1, . . . , Xn is a random sample from Expon(λ).
The log likelihood function is

ln [L (λ|X)] = n ln(λ) − λ

n∑

i=1

Xi.

Taking the derivative with respect to λ; setting it to zero; and solving for
λ̂ yields

λ̂ =
1

X
.

(f) Example: Suppose that X1, . . . , Xn is a random sample from Unif(θ).
The likelihood function is

L(θ|X(n)) =
1

θn
I(X(n),∞)(θ).

Plotting the likelihood function reveals that θ̂ = X(n) is the MLE. Note,
taking derivatives does not work in this case.
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(g) Example: Suppose that X1, . . . , Xn is a random sample from N(µ, σ2).
The log likelihood function is

ln
[
L
(
µ, σ2|X,S2

X

)]
= −n

2
ln(σ2) − 1

2σ2

n∑

i=1

(Xi −X)2 − n

2σ2
(X − µ)2.

Taking the derivatives with respect to µ and σ2 and setting them to zero
yields two equations to solve:

n

σ̂2
(X − µ̂) = 0 and

− n

2σ̂2
+

1

2σ̂4

n∑

i=1

(Xi −X)2 +
n

2σ̂4
(X − µ̂)2 = 0.

Solving the first equation for µ̂ yields µ̂ = X. Substituting µ̂ = X into
the second equation and solving for σ̂2 yields

σ̂2 =
1

n

n∑

i=1

(Xi −X)2.

(h) Invariance property of MLEs. Let g(θ) be a function of θ. Then, the

MLE of g(θ) is g(θ̂), where θ̂ is the MLE of θ.

Proof: We will prove the invariance property only for the special case in
which g(θ) is a one-to-one function. Note, if the dimension of θ is k, then
the dimension of g(θ) also must be k. Let η = g(θ). Then θ = g−1(η)
because g is one-to-one. Define L∗(η|X) as the likelihood function when
g(θ) = η. That is,

L∗(η|X) = fX[X|g−1(η)] = L[g−1(η)|X], where g−1(η) = θ.

Note that,

max
η

L∗(η|X) = max
η

L[g−1(η)|X] = max
θ

L[θ|X].

That is, the maximized likelihood is the same whether one maximizes L∗

with respect to η or maximizes L with respect to θ. Accordingly, if θ̂

maximizes the likelihood function L(θ|X), then η̂ = g(θ̂) maximizes the
likelihood function L∗(η|X).

Example Suppose that X1, X2, . . . , Xn is a random sample from N(µ, σ2).
Find the MLE of the coefficient of variation g(µ, σ2) = 100σ/µ. Solution:

ĝ = 100
σ̂

X
, where σ̂2 =

1

n

n∑

i=1

(Xi −X)2.

(i) Properties of MLEs: Under certain regularity conditions, it can be shown
(we will not do so) that
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i. MLEs are consistent,

ii. MLEs have asymptotic normal distributions, and

iii. MLEs are functions of sufficient statistics. This property is easy to
prove because the likelihood function depends on the data solely
through a sufficient statistic.

3. Rao-Blackwell Theorem If U(X) is unbiased for θ (a scalar) and T (X) is
sufficient, then V = V (T) = E(U |T ) is

(a) a statistic,

(b) unbiased for θ, and

(c) Var(V ) ≤ Var(U), with strict inequality iff and only if U is a function of
T.

Proof.

(a) V is a statistic because the distribution of X conditional on T does not
depend on θ. Accordingly, the expectation of V with respect to the
distribution of X conditional on T does not depend on θ.

(b) Note, E(U) = θ because U is unbiased. Now use iterated expectation:

θ = E(U) = ET [E(U |T)] = ET (V ) = E(V ).

(c) Use iterated variance:

Var(U) = E [Var(U |T)] + Var [E(U |T)]

= E [Var(U |T)] + Var(V ) ≥ Var(V ).

Example. Suppose that X1, X2, . . . , Xn is a random sample of size n from
Poi(λ). The goal is to find a good unbiased estimator of of P (X = 0) = e−λ.
Recall that T =

∑n
i=1Xi is sufficient and that T ∼ Poi(nλ). Consider

U = I{0}(X1) =

{
1 if X1 = 0

0 if X1 = 1.

The support of U is {0, 1} and the expectation of U is

E(U) = 1 × P (U = 1) + 0 × P (U = 0) = 1 × P (X1 = 0) = e−λ.

Thus, U is unbiased for e−λ. To find a better estimator, use the Rao-Blackwell
theorem. It was shown on page 75 of these notes that the conditional
distribution of X1, X2, . . . , Xk given T = t is

P (X1 = x1, X2 = x2, . . . , Xn = xn|T = t)
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=

(
t

x1, x2, . . . , xn

)(
1

n

)x1
(

1

n

)x2

· · ·
(

1

n

)xn

.

That is, given T = t, the X’s have a multinomial distribution with t trials, n
categories, and probability 1/n for each category. Note that the conditional
distribution of the data given T does not depend on λ. This is because T is
sufficient. The conditional distribution of X1 given T = t is binomial:

X1|(T = t) ∼ Bin

[
T,

1

n

]
.

The expectation of U given T = t is

E(U |T = t) = 1 × P (U = 1|T = 1) + 0 × P (U = 0|T )

= P (U = 1|T = t) = P (X1 = 0|T = t)

=

(
t

0

)(
1

n

)0(
1 − 1

n

)t−0

=

(
1 − 1

n

)t

.

Accordingly, an unbiased estimator of e−λ that has smaller variance than U is

E(U |T ) =

(
1 − 1

n

)T

.

9.11 Bayes Estimators

1. Setting: Suppose that we have (a) data, X1, . . . , Xn, (b) the corresponding
likelihood function, L(θ|T), where T is sufficient, and (c) a prior distribution
for θ, gΘ(θ). Then, if we are skillful, we can find the posterior gΘ|T (θ|T). We
would like to find point and interval estimators of θ.

2. Point Estimators: In general, we can use some characteristic of the posterior
distribution as our point estimator. Suitable candidates are the mean, median,
or mode. How do we choose which one to use?

(a) Loss Function: Suppose that we can specify a loss function that describes
the penalty for missing the mark when estimating θ. Denote our
estimator as a or a(t) because it will depend on t. Two possible loss
functions are

`1(θ, a) = |θ − a| and `2(θ, a) = (θ − a)2.

(b) Bayes Estimator: Recall that Θ is a random variable. A posterior
estimator, a, is a Bayes estimator with loss function ` if a minimizes the
posterior expected loss (Bayes loss):

Bayes Loss = B(a) = EΘ|T [`(Θ − a)] .
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(c) From prior results (see page 24 of these notes), the Bayes estimator for
loss `1 is known to be the median of the posterior distribution.

Recall that E(X) is the minimizer of E(X − a)2 with respect to a.
Accordingly, the Bayes estimator for loss `2 is the mean of the posterior
distribution

(d) Example: Suppose that X1, X2, . . . , Xn is a random sample from Bern(θ).
Recall that T =

∑n
i=1Xi is sufficient. Furthermore, suppose that the

prior on θ is Θ ∼ beta(α1, α2). Then the posterior, conditional on T = t
is Θ ∼ beta(α1 + t, α2 + n− t). The mean of the posterior is

E(Θ|T = t) =
α1 + t

α1 + α2 + n
.

If n = 10, α1 = α2 = 1, and t = 6, then

E(Θ|T = t) =
7

12
= 0.5833

and the median of the beta(7, 5) distribution is 0.5881, obtained by using
Matlab’s betainv function.

3. Interval Estimator: Use the posterior distribution to find lower and upper
limits, h1 and h2 such that

P (h1 ≤ Θ ≤ h2|T = t) = 1 − α.

The above interval is a Bayesian 100(1 − α)% confidence interval. In the
statistical literature, this interval usually is called a credibility interval. Unlike
the frequentist confidence interval, the credibility interval is interpreted as a
probability. That is, we say that Θ is contained in the interval with
probability 1 − α. This is the interpretation that 216 students often give to
frequentist intervals and we give them no credit when they do so.

Example 1 In the binomial example, the posterior distribution of Θ is
beta(7, 5). Using Matlab’s betainv function, a 95% Bayesian confidence
interval is

P (0.3079 ≤ Θ ≤ 0.8325) = 0.95.

Example 2 Suppose that X1 . . . , Xn is a random sample from N(µ, σ2), where
σ2 is known. If the prior on µ is µ ∼ N(ν, τ 2), then the posterior distribution is

µ|x̄ ∼ N

[
πx̄

πx̄ + πµ

x̄ +
πµ

πx̄ + πµ

ν, (πx̄ + πµ)−1

]
,

where the precisions are

πx̄ =
n

σ2
; and πµ =

1

τ 2
.
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A 95% Bayesian confidence interval for µ is

P

[
µ̂− 1.96

√
(πx̄ + πµ)−1 ≤ µ ≤ µ̂+ 1.96

√
(πx̄ + πµ)−1

∣∣∣∣∣X = x̄

]
= 0.95 where

µ̂ =
πx̄

πx̄ + πµ
x̄ +

πµ

πx̄ + πµ
ν.

As τ increases (indicating less and less a priori knowledge about µ), the
Bayesian confidence interval approaches

P

[
x̄− 1.96

σ√
n
≤ µ ≤ x̄ + 1.96

σ√
n

∣∣∣∣∣X = x̄

]
= 0.95.

This is interpreted as a fixed interval that has probability 0.95 of capturing
the random variable µ. Note that the above Bayesian credibility interval is
identical to the usual 95% frequentist confidence interval for µ when σ2 is
known.

9.12 Efficiency

1. This section is concerned with optimal estimators. For example, suppose that
we are interested in estimating g(θ), for some function g. The question to be
addressed is—how do we know if we have the best possible estimator? A
partial answer is given by the Cramér-Rao inequality. It gives a lower bound
on the variance of an unbiased estimator. If our estimator attains the
Cramér-Rao lower bound, then we know that we have the best unbiased
estimator.

2. Cramér-Rao Inequality (Information Inequality). Suppose that the joint pdf
(pmf) of X1, X2, . . . , Xn is fX(x|θ), where θ is a scalar and the support of X
does not depend on θ. Furthermore, suppose that the statistic T (X) is an
unbiased estimator of a differentiable function of θ. That is, E(T ) = g(θ).
Then, under mild regularity conditions,

Var(T ) ≥

[
∂g(θ)

∂θ

]2

Iθ
, where Iθ = E

[(
∂ ln fX(X|θ)

∂θ

)2
]
.

The quantity Iθ is called Fisher’s information and it is an index of the amount
of information that X has about θ.

Proof. Define the random variable S as

S = S(X, θ) =
∂ ln fX(X|θ)

∂θ
=

1

fX(X|θ)
∂fX(X|θ)

∂θ
.

This quantity is called the score function (not in your text). Your text denotes
the score function by W .
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(a) Result: The expected value of the score function is zero.

Proof: This result can be shown by interchanging integration and
differentiation (justified if the regularity conditions are satisfied):

E(S) =

∫
S(x, θ)fX(x|θ) dx

=

∫
1

fX(x|θ)
∂fX(x|θ)

∂θ
fX(x|θ) dx

=

∫
∂fX(x|θ)

∂θ
dx

=
∂

∂θ

∫
fX(x|θ) dx

=
∂

∂θ
1 = 0.

because the integral of the joint pdf over the entire sample space is 1.
Substitute summation for integration if the random variables are discrete.

(b) Result: The variance of S is Iθ.

Proof: This result follows from the first result and from the definition of
Iθ:

Var(S) = E(S2) − [E(S)]2 = E(S2) = Iθ.

(c) Result: The covariance between S and T is

Cov(S, T ) =
∂g(θ)

∂θ
.

Proof: To verify this result, again we will interchange integration and
differentiation. First, note that Cov(S, T ) = E(ST ) − E(S)E(T ) = E(ST )
because E(S) = 0. Accordingly,

Cov(S, T ) = E(ST ) =

∫
S(x, θ)T (x)fX(x|θ) dx

=

∫
1

fX(x|θ)
∂fX(x|θ)

∂θ
T (x)fX(x|θ) dx

=

∫
∂fX(x|θ)

∂θ
T (x) dx

=
∂

∂θ

∫
fX(x|θ)T (x) dx

=
∂

∂θ
E(T ) =

∂g(θ)

∂θ
.

(d) Result: Cramér-Rao Inequality:

Var(T ) ≥

[
∂g(θ)

∂θ

]2

Iθ
.
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The right-hand-side of the above equation is called the Cramér-Rao
Lower Bound (CRLB). That is,

CRLB =

[
∂g(θ)

∂θ

]2

Iθ
.

Proof: If ρ is a correlation coefficient, then from the Cauchy-Schwartz
inequality it is known that 0 ≤ ρ2 ≤ 1. Accordingly,

ρ2
S,T =

[Cov(S, T )]2

Var(S) Var(T )
≤ 1

=⇒ Var(T ) ≥ [Cov(S, T )]2

Var(S)
=

[
∂g(θ)

∂θ

]2

Iθ
.

(e) If g(θ) = θ, then the inequality simplifies to

Var(T ) ≥ 1

Iθ
because

∂

∂θ
θ = 1.

(f) Note: if X1, X2, . . . , Xn are iid, then the score function can be written as

S(X|θ) =
∂

∂θ

n∑

i=1

ln fX(Xi|θ)

=

n∑

i=1

∂ ln fX(Xi|θ)
∂θ

=
n∑

i=1

Si(Xi, θ), where Si =
∂ ln fX(Xi|θ)

∂θ

is the score function for Xi. The score functions Si for i = 1, . . . , n are
iid, each with mean zero. Accordingly,

Var(S) = Var

(
n∑

i=1

Si

)
=

n∑

i=1

Var(Si) by independence

=

n∑

i=1

E(S2
i ) = nE(S2

1),

where S1 is the score function for X1.

3. Example: Suppose that X1, X2, . . . , Xn is a random sample from Poi(λ). The
score function for a single X is

S(Xi, λ) =
∂ [−λ +Xi ln(λ) − ln(Xi!)]

∂λ
= −1 +

Xi

λ
.



9.12. EFFICIENCY 127

Accordingly, the information is

Iθ = nVar(−1 +Xi/λ) = n
Var(Xi)

λ2
= n

λ

λ2
=
n

λ
.

Suppose that the investigator would like to estimate g(λ) = λ. The MLE of λ
is X (homework) and E(X) = λ, so the MLE is unbiased. The variance of a
Poisson random variable is λ and therefore Var(X) = λ/n. The CRLB for
estimating λ is

CRLB =

[
∂
∂λ
λ
]2

n/λ
=
λ

n
.

Therefore, the MLE attains the CRLB.

4. Efficiency: The efficiency of an unbiased estimator of g(θ) is the ratio of the
CRLB to the variance of the estimator. That is, suppose that T is an
unbiased estimator of g(θ). Then the efficiency of T is

Efficiency =
CRLB

Var(T )

=

(
∂g(θ)

∂θ

)2

Iθ
÷ Var(T ) =

(
∂g(θ)

∂θ

)2

Iθ Var(T )
.

If this ratio is one, then the estimator is said to be efficient. Efficiency always
is less than or equal to one.

5. Exponential Family Results: Recall, if the distribution of X belongs to the one
parameter exponential family and X1, X2, . . . , Xn is a random sample, then
the joint pdf (pmf) is

fX(X|θ) = [B(θ)]n

[
n∏

i=1

h(Xi)

]
exp

{
Q(θ)

n∑

i=1

R(Xi)

}
.

(a) The score function is

S(T, θ) = n
∂ lnB(θ)

∂θ
+ T

∂Q(θ)

∂θ
, where T =

n∑

i=1

R(Xi).

(b) Note that the score function is a linear function of T :

S = a+ bT, where a = n
∂ lnB(θ)

∂θ
and b =

∂Q(θ)

∂θ
.

(c) Recall that E(S) = 0. It follows that

n
∂ lnB(θ)

∂θ
+ E(T )

∂Q(θ)

∂θ
= 0 and

E(T ) = −n∂ lnB(θ)

∂θ

[
∂Q(θ)

∂θ

]−1

.
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(d) Result: Suppose that g(θ) is chosen to be

g(θ) = E(T ) = −n∂ lnB(θ)

∂θ

[
∂Q(θ)

∂θ

]−1

.

Then,

Var(T ) =

(
∂g(θ)

∂θ

)2

Iθ
= CRLB

and T is the minimum variance unbiased estimator of g(θ).

Proof: First, note that T is unbiased for E(T ). Second, note that

S = a + bT =⇒ ρ2
S,T = 1 =⇒

[
∂g(θ)

∂θ

]2

Var(T ) Iθ
= 1

=⇒ Var(T ) =

(
∂g(θ)

∂θ

)2

Iθ
= CRLB.

6. Example. Suppose that X1, X2, . . . , Xn is a random sample form Geom(θ).
The pmf of Xi is

fX(xi|θ) = (1 − θ)xi−1θI{1,2,...}(xi) =
θ

1 − θ
I{1,2,...}(xi) exp{ln(1 − θ)xi}.

Accordingly, the distribution of X belongs to the exponential family with

B(θ) =
θ

1 − θ
; h(xi) = I{1,2,...}(xi); Q(θ) = ln(1 − θ); and R(xi) = xi.

The score function for the entire sample is

S(X, θ) = n
∂ ln θ

1−θ

∂θ
+ T

∂ ln(1 − θ)

∂θ

= n

(
1

θ
+

1

1 − θ

)
− T

1 − θ
,

where T =
∑n

i=1Xi. It follows that

E(T ) = g(θ) =
n

θ
; E

(
1

n
T

)
= E(X) =

1

θ
;

and that T is the minimum variance unbiased estimator of n/θ. Equivalently,
T/n = X is the minimum variance unbiased estimator of 1/θ. The variance of
T can be obtained from the moment generating function. the result is

Var(Xi) =
1 − θ

θ2
=⇒ Var(T/n) =

1 − θ

nθ2
.
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7. Another Exponential Family Result: Suppose that the joint pdf (pmf) of
X1, X2, . . . , Xn is fX(x|θ); T (X) is a statistic that is unbiased for g(θ); and
Var(T ) attains the Cramér-Rao lower bound. Then T is sufficient and the
joint pdf (pmf) belongs to the one parameter exponential family.

Proof: If Var(T ) attains the Cramér-Rao lower bound, then it must be true
that ρ2

S,T = 1 and that

S(X, θ) = a(θ) + b(θ)T (X)

for some functions a and b. Integrating S with respect to θ gives

∫
S(X, θ) dθ = ln fX(X|θ) +K1(X) for some function K1(X)

=

∫
a(θ) + b(θ)T (X) dθ = A(θ) +B(θ)T (X) +K2(X)

=⇒ fX(X|θ) = exp{A(θ)} exp {[K2(X) −K1(X)]} exp{B(θ)T (X)}.

which shows that the distribution belongs to the exponential family and that
T is sufficient.
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Chapter 10

SIGNIFICANCE TESTING

This chapter describes hypothesis testing from a Fisherian viewpoint. The main
ingredients are hypotheses, test statistics, and p-values.

10.1 Hypotheses

1. H0 and Ha are statements about probability models or, equivalently, about
population characteristics.

2. The null hypothesis, H0, usually says no effect, no difference, etc. In terms of
parameters, it usually is written as H0 : θ = θ0; H0 : θ ≤ θ0; or H0 : θ ≥ θ0,
where θ0 is a value specified by the investigator. It is important that the null
contains a point of equality.

3. The alternative states that the null is false and usually is written as
Ha : θ 6= θ0; Ha : θ > θ0; or Ha : θ < θ0.

10.2 Assessing the Evidence

1. A significance test is a test of H0. The strategy is as follows:

(a) Translate the scientific hypothesis into H0 and Ha.

(b) Begin with the assumption that H0 is true.

(c) Collect data.

(d) Determine whether or not the data contradict H0. The p-value is a
measure of how strongly the data contradict the null. A small p-value is
strong evidence against H0.

2. Test statistic: Definition: A test statistic is a function of the data and θ0. The
test statistic is chosen to discriminate between H0 and Ha. Usually, it
incorporates an estimator of θ. Familiar test statistics are
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(a) Z =
θ̂ − θ0

SE(θ̂|H0)

(b) t =
X − µ0

SX/
√
n

(c) X2 =
(n− 1)S2

X

σ2
0

3. p-value Denote the test statistic as T and denote the realized value of T as
tobs. The p-value is a measure of consistency between the data and H0. It is
defined as

p-value = P
(
T is as or more extreme than tobs in the direction of Ha

∣∣∣H0

)
.

A small p-value means that the data are not consistent with H0. That is,
small p-values are taken to be evidence against H0.

4. Common Error I: Many investigators interpret a large p-value to be evidence
for H0. This is not correct. A large p-value means that there is little or no
evidence against H0. For example, consider a test of H0 : µ = 100 versus
Ha : µ 6= 100 based on a sample of size n = 1 from N(0, 202). Suppose that the
true mean is µ = 105 and that X = 101 is observed (4/20 = 1/5σ below the
true mean). The Z statistic is

zobs =
101 − 100

20
= 0.05

and the p-value is

p-value = 2[1 − Φ(0.05)] = 2(1 − 0.5199) = 0.9601.

The p-value is large, but the data do not provide strong evidence that H0 is
true.

5. Common Error II: Many investigators interpret a very small p-value to mean
that a large (important) effect has been found. This is not correct. A very
small p-value is strong evidence against H0. It is not evidence that a large
effect has been found. Example: Suppose that the standard treatment for the
common cold reduces symptoms in 62% of the population. An investigator
develops a new treatment and wishes to test H0 : p = 0.62 against
H0 : p > 0.62. The usual test statistic is

Z =
p̂− p0√
p0(1−p0)

n

,

where p0 = 0.62. If the new treatment reduces symptoms in 62.1% of a sample
of size n = 3,000,000, then the observed value of the test statistic is

zobs =
.621 − .62√

.62(1−.62)
3,000,000

= 3.5684.
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The p-value is P (Z > 3.5684|H0) = 0.00018. This is strong evidence against
H0, but the effect size is very small.

6. Using likelihood to find a test statistic. One way to find a test statistic for
testing H0 : θ = θ0 against a one or two-sided alternative is to examine the
likelihood ratio

LR =
L(θ0|X)

max
θ
L(θ|X)

,

where the maximization in the denominator is over all θ that satisfy Ha. The
LR is ratio of the probability of the data under H0 to the largest possible
probability of the data under Ha. The LR satisfies LR ∈ (0, 1). Small values of
LR are interpreted to be evidence against H0. Example: suppose that
H0 : p = p0 is to be tested against Ha : p 6= p0 using a random sample from
Geom(p). Recall that the MLE of p is p̂ = 1/X. The likelihood ratio is

LR =
(1 − p0)

n(X−1)pn
0

(1 − 1/X)nX
−n =

(
1 − p0

X − 1

)n(X−1)

X
nX
pn

0 .

In the following display, the log of the LR statistic is plotted against X for the
special case n = 10 and p0 = 0.25.

0 2 4 6 8 10 12 14 16 18 20
−30

−25

−20

−15

−10

−5

0

5

X bar

ln
(L

R
)

Ln(LR) Statistic: Geometric Distribution, p
0
 = 1/4

The above plot reveals that the log likelihood ratio statistic is small if X is
substantially larger or substantially smaller that 4. Note that
X = 4 =⇒ 1/X = 0.25 = p0 and that the LR statistic is 1 if X = 4; i.e., the
log of the LR statistic is zero.
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To use the likelihood ratio as a test statistic, it is necessary to determining its
sampling distribution under a true null. This can be quite difficult, but
fortunately there is an easy to use large sample result. If θ is a scalar, then
under certain regularity conditions, the asymptotic null distribution of
−2 ln(LR) is χ2

1.

10.3 One Sample Z Tests

1. Form of the test Statistic. Suppose that it is of interest to test H0 : θ = θ0

against either Ha : θ 6= θ0, Ha : θ > θ0, or Ha : θ < θ0. Further, suppose that we
have an estimator of θ that satisfies

T |H0 ∼̇ N

(
θ,
ω2

0

n

)

and an estimator of ω2
0, say W 2

0 that satisfies W 2
0

prob−→ ω2
0 whenever H0 is true.

The subscript on ω is a reminder that the variance of T under H0 could be a
function of θ0.

2. A reasonable test statistic is

Z =
T − θ0
W0/

√
n
.

If sample size is large, then the distribution of Z under H0 is approximately
N(0, 1).

3. p-values Let zobs be the observed test statistic. Then the p-value for testing H0

against Ha is

(a) 1− P (−|zobs| ≤ Z ≤ |zobs|) = 2 [1 − Φ(|zobs|)] if the alternative hypothesis
is Ha : θ 6= θ0;

(b) P (zobs ≤ Z) = 1 − Φ(zobs) if the alternative hypothesis is Ha : θ > θ0; and

(c) P (Z ≤ zobs) = Φ(zobs) if the alternative hypothesis is Ha : θ < θ0.

4. Example: X1, X2, . . . , Xn is a random sample from a population with mean µ
and variance σ2. To test H0 : µ = µ0 against either Ha : µ 6= µ0, Ha : µ > µ0, or
Ha : µ < µ0, use the test statistic

Z =
X − µ0

SX/
√
n
.

5. Example: X1, X2, . . . , Xn is a random sample from Bern(p). To test H0 : p = p0

against either Ha : p 6= p0, Ha : p > p0, or Ha : p < p0, use the test statistic

Z =
p̂− p0√

p0(1 − p0)/n
.

Note that ω2
0 = p0(1 − p0).
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10.4 One Sample t Tests

Suppose that X1, X2, . . . , Xn is a random sample from N(µ, σ2). To test H0 : µ = µ0

against either Ha : µ 6= µ0, Ha : µ > µ0, or Ha : µ < µ0, use the test statistic

T =
X − µ0

SX/
√
n
.

Under H0, the test statistic has a t distribution with n− 1 degrees of freedom.

10.5 Some Nonparametric Tests

We will examine only the sign test. Suppose that X1, X2, . . . , Xn is a random
sample from a continuous distribution having median µ̃. A test of H0 : µ̃ = µ̃0

against either Ha : µ̃ 6= µ̃0, Ha : µ̃ > µ̃0, or Ha : µ̃ < µ̃0 is desired. Let

Ui = I(−∞,eµ0](Xi) =

{
1 if Xi ≤ µ̃0; and

0 otherwise.

Under H0, Ui ∼ iid Bern(0.5) and Y =
∑n

i=1 Ui ∼ Bin(n, 0.5). Accordingly, the test
statistic

Z =
p̂− 0.5√
.25/n

is distributed approximately N(0, 1) under H0, where p̂ = Y/n.

10.6 Probability of the Null Hypothesis

When using the frequentist approach, it is not correct to interpret the p-value as the
probability that H0 is true. When using the Bayesian approach, then the posterior
probability that H0 is true can be computed.

Suppose, for example, that Xi ∼ iid Bern(θ) for i = 1, . . . , n. Furthermore,
suppose that the prior on θ is Θ ∼ Beta(α1, α2). The sufficient statistic is
Y =

∑n
i=1Xi and the posterior is Θ|(Y = y) ∼ Beta(α1 + y, α2 + n− y). Suppose

that one wants to test H0 : θ ≤ θ0 against Ha : θ > θ0. Then

P (H0|Y = y) = P (Θ ≤ θ0|Y = y) =

∫ θ0

0

gΘ|Y (θ|y) dθ.

For example, if α1 = α2 = 1, n=40, y=30, and we want to test H0 : θ ≤ 0.6
against Ha : θ > 0.6, then Θ|(Y = 30) ∼ Beta(31, 11) and

P (H0|Y = 30) =

∫ 0.6

0

θ30(1 − θ)10

B(31, 11)
dθ = 0.0274.
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The test statistic for computing the frequentist p-value is

zobs =
0.75 − 0.6√

0.6(1−0.6)
40

= 1.9365.

The p-value is
p-value = P (Z > 1.9365) = 0.0264.

If the correction for continuity is employed, then

zobs =
0.75 − 1

80
− 0.6√

0.6(0.4)
40

= 1.7751 and 4-value = 0.0379.

There are some complications if one wants a Bayesian test of H0 : θ = θ0 against
Ha : θ 6= θ0. Your textbook gives one example. We will not have time to discuss this
issue.



Chapter 11

TESTS AS DECISION RULES

This chapter introduces the Neyman-Pearson theory of tests as decision rules. In
this chapter it is assumed that a decision about H0 verses Ha must be made. Based
on the data, the investigator either will reject H0 and act as though Ha is true or fail
to reject H0 and act as though H0 is true. The latter decision is called “accept H0.”

11.1 Rejection Regions and Errors

1. Suppose that the data consist of X1, X2, . . . , Xn. The joint sample space of X
is partitioned into two pieces, the rejection region and the acceptance region.
In practice, the partitioning is accomplished by using a test statistic.

(a) Rejection region: the set of values of the test statistic that call for
rejecting H0.

(b) Acceptance region: the set of values of the test statistic that call for
accepting H0. The acceptance region is the complement of the rejection
region.

2. Errors

(a) Type I: rejecting a true H0.

(b) Type II: accepting a false H0.

3. Size of the Test:

size = α = P (reject H0|H0 true).

4. Type II error probability:

P (type II error) = β = P (accept H0|H0 false).

5. Power:

power = 1 − β = P (reject H0|H0 false).
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6. Example; Consider a test of H0 : p = 0.4 versus Ha : p 6= 0.4 based on a random
sample of size 10 from Bern(p). Let Y =

∑
Xi. If the rejection rule is to reject

H0 if Y ≤ 0 or Y ≥ 8, then the test size is

α = 1 − P (1 ≤ Y ≤ 7|p = 0.4) = 0.0183.

The type II error probability and the power depend on the value of p when H0

is not true. Their values are

P (type II error) = P (1 ≤ Y ≤ 7|p) and power = 1 − P (1 ≤ Y ≤ 7|p).

The two plots below display the type II error probabilities and power for
various values of p.
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11.2 The Power function

Suppose that X1, X2, . . . , Xn is a random sample from fX(x|θ). Denote the
parameter space of θ by Θ and let Θ0 and Θa be two disjoint subspaces of Θ.
Consider a test of H0 : θ ∈ Θ0 against Ha : θ ∈ Θa. The power function is a function
of θ and is defined by

π(θ) = P (reject H0|θ).
The function usually is used when θ ∈ Θa, but the function is defined for all θ ∈ Θ.

For example, consider a test of H0 : µ = µ0 against Ha : µ > µ0 based on a
random sample of size n from N(µ, σ2), where σ2 is known. Let Φ−1(1 − α) = z1−α

be the 100(1 − α) percentile of the standard normal distribution. Then a
one-sample Z test of H0 will reject H0 if Z > z1−α, where

Z =
X − µ0

σ/
√
n
.

The power function is

π(µa) = P (Z > z1−α|µ = µa) = 1 − P

[
X − µ0

σ/
√
n

≤ z1−α

∣∣∣∣µ = µa]

= 1 − P

[
X − µa + µa − µ0

σ/
√
n

≤ z1−α

∣∣∣∣µ = µa]

= 1 − P

[
X − µa

σ/
√
n

≤ z1−α − µa − µ0

σ/
√
n

∣∣∣∣µ = µa]

= 1 − Φ

[
z1−α − µa − µ0

σ/
√
n

]
.



140 CHAPTER 11. TESTS AS DECISION RULES

As an illustration, if σ = 10, µ0 = 100, n = 25, and α = 0.05, then the power
function is

π(µa) = 1 − Φ

[
1.645 − µa − 100

2

]
.

This function is displayed below for various values of µa.
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11.3 Choosing a Sample Size

An investigator may want to plan a study so that power will be adequate to detect
a meaningful difference. Consider the power function from the last section. Suppose
that the investigator decides that the minimal difference of importance is two
points. That is, if µa ≥ 102, then the investigator would like to reject H0. If µa is
fixed at µa = 102, then the power of the test as a function of n is

π(µa) = 1 − Φ

[
1.645 − 102 − 100

10/
√
n

]
= 1 − Φ

[
1.645 −

√
n

5

]
.

This function is plotted below for various values of n.
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If the investigator has decided that a specific power is necessary, then the required
sample size can be read from the above display.

In general, the required sample size for a one sample Z test of H0 : µ = µ0

against H0 : µ > µ0 can be obtained by equating the power function to the desired
value of 1 − β and solving for n. Denote the 100β percentile of the standard normal
distribution by Φ−1(β) = zβ. That is

π(µa) = 1 − Φ

[
z1−α − µa − µ0

σ/
√
n

]
= 1 − β

⇐⇒ Φ

[
z1−α − µa − µ0

σ/
√
n

]
= β

⇐⇒ z1−α − µa − µ0

σ/
√
n

= Φ−1(β) = zβ

⇐⇒ n =
σ2(z1−α − zβ)2

(µa − µ0)2
.

For example, if µ0 = 100, µa = 102, α = 0.05, β = 0.10, and σ = 10, then

n =
100(1.645 + 1.282)2

(102 − 100)2
= 214.18.

A sample size of n = 215 is required.

11.4 Quality Control

Skip this section.
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11.5 Most Powerful tests

1. Definition: Simple Hypothesis. A simple hypothesis is one that completely
specifies the joint distribution of the data. That is, there are no unknown
parameters under a simple hypothesis. For example H0 : Y ∼ Bin(25, 1

3
) is a

simple hypothesis. In this section, we will examine the test of a simple H0

against a simple Ha.

2. Definition: Most Powerful Test. A test of a simple H0 versus a simple Ha is a
most powerful test of size α if no other test which has size ≤ α has greater
power.

3. Neyman-Pearson Lemma: Consider the hypotheses H0 : X ∼ f0(x) against
Ha : X ∼ f1(x), where f0 and f1 are the joint pdfs (pmfs) under H0 and Ha,
respectively. Then the most powerful test is to reject H0 if

Λ(x) < K, where Λ(x) =
f0(x)

f1(x)

is the likelihood ratio. Furthermore, the size of the test is

α =

∫

R

f0(x) dx, where R = {x; Λ(x) < K}.

Proof: Consider any other test that has size ≤ α. Denote the rejection region
of the competing test by R∗ and denote the power of the competing test by
1 − β∗. Then

∫

R∗

f0(x) dx = α∗ ≤ α and

(1 − β) − (1 − β∗) = β∗ − β =

∫

R

f1(x) dx −
∫

R∗

f1(x) dx.

We will show that the above difference is greater than or equal to zero. Note
that R = (R ∩R∗) ∪ (R ∩R∗c) and that (R ∩R∗) is disjoint from (R ∩ R∗c).
Similarly, R∗ = (R∗ ∩R) ∪ (R∗ ∩Rc) and (R∗ ∩R) is disjoint from (R∗ ∩ Rc).
Accordingly,

∫

R

f1(x) dx =

∫

R∩R∗

f1(x) dx +

∫

R∩R∗c

f1(x) dx,
∫

R∗

f1(x) dx =

∫

R∗∩Rc

f1(x) dx +

∫

R∗∩R

f1(x) dx, and

β∗ − β =

∫

R∩R∗

f1(x) dx +

∫

R∩R∗c

f1(x) dx−
∫

R∗∩R

f1(x) dx−
∫

R∗∩Rc

f1(x) dx

=

∫

R∩R∗c

f1(x) dx−
∫

R∗∩Rc

f1(x) dx.
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Note that (R ∩ R∗) ∈ R so that f1(x) > K−1f0(x) in the first integral. Also,
(R∗ ∩ Rc) ∈ Rc so that f1(x) < K−1f0(x) in the second integral. Therefore,

β∗ − β ≥ 1

K

∫

R∩R∗c

f0(x) dx − 1

K

∫

R∗∩Rc

f0(x) dx

=

[
1

K

∫

R∩R∗c

f0(x) dx +
1

K

∫

R∩R∗

f0(x) dx

]

−
[

1

K

∫

R∗∩Rc

f0(x) dx +
1

K

∫

R∗∩R

f0(x) dx

]
by adding zero

=
1

K

∫

R

f0(x) dx − 1

K

∫

R∗

f0(x) dx =
1

K
(α− α∗) ≥ 0

because the size of the competing test is α∗ ≤ α.

4. Example: Suppose that X1, X2, . . . , Xn is a random sample from NegBin(k, θ),
where k is known. Find the most powerful test of H0 : θ = θ0 against
Ha : θ = θa, where θa > θ0. Solution: The likelihood ratio test statistic is

Λ(x) =

n∏

i=1

(
xi − 1

k − 1

)
θk
0(1 − θ0)

xi−k

n∏

i=1

(
xi − 1

k − 1

)
θk

a(1 − θa)
xi−k

=
θnk
0 (1 − θ0)

n(x̄−k)

θnk
a (1 − θa)

n(x̄−k)

=

(
θ0(1 − θa)

θa(1 − θ0)

)nk (
1 − θ0

1 − θa

)n(x̄−k)

.

Note that the likelihood ratio test statistic depends on the data solely through
x̄ and that

θa > θ0 =⇒ 1 − θ0

1 − θa

> 1.

Accordingly Λ(x) is an increasing function of x̄. Rejecting H0 for small values
of Λ(x) is equivalent to rejecting H0 for small values of x̄ and the most
powerful test is to reject H0 if x̄ < K∗ where K∗ is determined by the relation

P (X < K∗|θ = θ0) ≤ α.

The above probability can be evaluated without too much difficulty because

nX =

n∑

i=1

Xi ∼ NegBin(nk, θ0)

under H0.
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11.6 Randomized Tests

Skip this section.

11.7 Uniformly Most Powerful tests

1. Consider the problem of testing H0 : θ = θ0 against H0 : θ > θ0 based on a
random sample of size n from fX(x|θ).

2. Uniformly Most Powerful (UMP) Test. Definition: If a test of H0 : θ = θ0

against Ha : θ = θa, is a most powerful test for every θa > θ0 among all tests
with size ≤ α, then the test is uniformly most powerful for testing H0 : θ = θ0

against Ha : θ > θ0.

3. Approach to finding a UMP test. First use the Neyman-Pearson Lemma to
find a most powerful test of H0 : θ = θ0 against Ha : θ = θa for some θa > θ0. If
the form of the test is the same for all θa, then the test is UMP.

4. Example: Suppose that X1, X2, . . . , Xn is a random sample from NegBin(k, θ),
where k is known. Find the UMP test of H0 : θ = θ0 against Ha : θ > θ0.
Solution: The most powerful test of H0 : θ = θ0 against Ha : θ = θa, where
θa > θ0 is to reject H0 if x̄ < K∗ where K∗ is determined by the relation

P (X < K∗|θ = θ0) ≤ α.

Note that the form of the test does not depend on the particular value of θa.
Accordingly, the test that rejects H0 for small values of x̄ is the UMP test of
H0 : θ = θ0 against Ha : θ > θ0.

5. A similar argument shows that in the negative binomial example, the UMP
test of H0 : θ = θ0 against Ha : θ < θ0 is to reject H0 for large values of x̄.

6. The UMP idea can be extended to tests of H0 : θ ≤ θ0 against Ha : θ > θ0. If
the power function is monotonic in θ, then the UMP test of H0 : θ = θ0 against
Ha : θ > θ0 also is UMP for testing H0 : θ ≤ θ0 against Ha : θ > θ0. The size of
the test is

α = sup
θ≤θ0

P (reject H0|θ) = sup
θ≤θ0

π(θ) = P (reject H0|θ0)

because the power function is monotonic It can be shown that the power
function is monotone in θ if the distribution of X belongs to the one
parameter exponential family.
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11.8 Likelihood Ratio Tests

1. Consider the problem of testing H0 : θ ∈ Θ0 against Ha : θ ∈ Θa, where Θ0 and
Θa are disjoint subspaces of the parameter space. The parameter θ may be a
vector.

2. The generalized likelihood ratio test of H0 against Ha is to reject H0 for small
values of the likelihood ratio test statistic

Λ(X) =
L(θ̂0|X)

L(θ̂a|X)
, where

L(θ̂0|X) = sup
θ∈Θ0

L(θ|X) and L(θ̂a|X) = sup
θ∈Θ0∪Θa

L(θ|X).

That is, the likelihood function is maximized twice; first under the null, and
second under the union of the null and alternative.

3. Properties of Λ(X).

(a) Λ(X) ∈ [0, 1].

(b) Small values of Λ are evidence against H0.

(c) Under mild regularity conditions, the asymptotic null distribution of
−2 ln [Λ(X)] is χ2 with degrees of freedom equal to the number of
restrictions under H0 minus the number of restrictions under Ha.

(d) The decision rule is to reject H0 for large values of −2 ln(Λ).

4. Example 1: Suppose that Xij
ind∼ Bern(pi) for j = 1, . . . , ni. That is, we have

independent samples from each of two Bernoulli populations. Consider the
problem of testing H0 : p1 = p2 against Ha : p1 6= p2. The sufficient statistics
are Y1 =

∑n1

j=1X1j and Y2 =
∑n2

j=1X2j . These statistics are independently
distributed as Yi ∼ Bin(ni, pi). The likelihood function is

L(p1, p2|y1, y2) = py1
1 (1 − p1)

n1−y1py2
2 (1 − p2)

n2−y2.

Under H0, the MLE of the common value p = p1 = p2 is
p̂ = (y1 + y2)/(n1 + n2). Under the union of H0 and Ha, there are no
restrictions on p1 and p2 and the MLEs are p̂1 = y1/n1 and p̂2 = y2/n2. The
likelihood ratio test statistic is

Λ(y1, y2) =
p̂ y1+y2(1 − p̂)n1+n2−y1−y2

p̂ y1
1 (1 − p̂1)

n1−y1 p̂ y2
2 (1 − p̂2)

n2−y2
.

If H0 is true and sample sizes are large, then −2 ln [Λ(Y1, Y2)] is approximately
distributed as a χ2 random variable. There are no restrictions under Ha and
one restriction under H0, so the χ2 random variable has 1 degree of freedom.
For example, if n1 = 30, n2 = 40, y1 = 20, and y2 = 35, then
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Λ(y1, y2) = 0.1103, −2 ln(Λ) = 4.4087, and the p-value is 0.0358. For
comparison, the familiar large sample test statistic is

z =
p̂1 − p̂2√

p̂(1 − p̂)
(

1
n1

+ 1
n2

) = 2.1022

and the p-value is 0.0355. Note, Z2 ∼ χ2
1 and z2 = 4.4192 which is very close

to the LR test statistic.

5. Example 2: Your textbook (page 476) shows that the usual one-sample t test
of H0 : µ = µ0 against Ha : µ 6= µ0 when sampling from a normal distribution
with unknown variance is the likelihood ratio test. Below is another version of
the proof.

(a) Lemma: Let a be a constant or a variable that does not depend on σ2

and let n be a positive constant. Then, the maximizer of

h(σ2; a) =
e−

1
2σ2 a

(
σ2
)n

2

with respect to σ2 is

σ̂2 =
a

n
.

Also,

max
σ2

h(σ2; a) = h
(a
n
, a
)

=
e−

n
2

(a
n

)n
2

.

Proof: The natural log of h is

ln(h) = − 1

2σ2
a− n

2
ln(σ2).

Equating the first derivative of ln(h) to zero and solving for σ2 yields

∂

∂ σ2
ln(h) =

1

2σ4
a− n

2σ2
,

∂

∂ σ2
ln(h) = 0 =⇒ a

σ2
− n = 0

=⇒ σ2 =
a

n
.

The solution is a maximizer because the second derivative of ln(h)
evaluated at σ2 = a/n is negative:

∂2

(∂ σ2)2
ln(h) =

∂

∂ σ2

( a

2σ4
− n

2σ2

)
= − a

σ6
+

n

2σ4
,

∂2

(∂ σ2)2
ln(h)

∣∣∣∣
σ2=a/n

= − a

(a/n)3
+

n

2(a/n)2
= −n

3

a2
< 0.

To obtain the maximum, substitute a/n for σ2 in h(σ2, a).
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(b) Theorem: The generalized likelihood ratio test of H0 : µ = µ0 against
Ha : µ 6= µ0 based on a random sample of size n from a normal
distribution with unknown variance is to reject H0 for large |T |, where

T =

√
n(X − µ0)

SX
,

X =
1

n

n∑

i=1

Xi, and S2
X =

1

n− 1

n∑

i=1

(Xi − X̄)2.

Proof: The likelihood function of µ and σ2 given Xi
iid∼ N(µ, σ2) for

i = 1, . . . , n is

L(µ, σ2|X) =

exp

{
− 1

2σ2

n∑

i=1

(Xi − µ)2

}

(
σ2
)n

2 (2π)
n
2

.

Under H0 : µ = µ0, the likelihood function is

L(µ0, σ
2|X) =

exp

{
− 1

2σ2

n∑

i=1

(Xi − µ0)
2

}

(
σ2
)n

2 (2π)
n
2

.

Using the Lemma with

a =
n∑

i=1

(Xi − µ0)
2

yields

σ̂2
0 =

1

n

n∑

i=1

(Xi − µ0)
2 and

max
σ2

L(µ0, σ
2|X) = L(µ0, σ̂

2
0|X) =

e−
n
2

(
1

n

n∑

i=1

(Xi − µ0)
2

)n
2

(2π)
n
2

.

Under H0 ∪ Ha, the likelihood function must be maximized with respect
to µ and σ2. Note that the sign of the exponent in the numerator of L is
negative. Accordingly, to maximize L with respect to µ, we must
minimize

n∑

i=1

(Xi − µ)2
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with respect to µ. By the parallel axis theorem, it is known that the
minimizer is µ = X. Substitute X for µ in the likelihood function and
use the Lemma with

a =

n∑

i=1

(Xi −X)2

to obtain

σ̂2
a =

1

n

n∑

i=1

(Xi −X)2 and

max
σ2,µ

L(µ, σ2|X) = L(X, σ̂2
a|X) =

e−
n
2

(
1

n

n∑

i=1

(Xi −X)2

)n
2

(2π)
n
2

.

The likelihood ratio test statistic is

Λ =
L(µ0, σ̂

2
0)

L(X, σ̂2
a)

=




n∑

i=1

(Xi −X)2

n∑

i=1

(Xi − µ0)
2




n
n

.

Recall, that from the parallel axis theorem,

n∑

i=1

(Xi − µ0)
2 =

n∑

i=1

(Xi −X)2 + n(X − µ0)
2.

Accordingly, the Likelihood Ratio Test (LRT) is to reject H0 for small Λ,
where

Λ =




n∑

i=1

(Xi −X)2

n∑

i=1

(Xi −X)2 + n(X − µ0)
2




n
2

.

Any monotonic transformation of Λ also can be used as the LRT
statistic. In particular,

(
Λ− 2

n − 1
)

(n− 1) =
n(X − µ0)

2

S2
X

= T 2

is a decreasing function of Λ. Therefore, the LRT rejects H0 for large T 2

or, equivalently, for large |T |.
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11.9 Bayesian Testing

1. To develop a Bayes Test, first make the following definitions:

(a) Loss Function: `(θ, act) = loss incurred if action act is performed when
the state of nature is θ. The action act will be either “reject H0” or
“accept H0.” For example, `(H0, reject H0) is the loss incurred when a
true H0 is rejected. It is assumed that making the correct action incurs
no loss.

(b) Parameter Space: Denote the support of θ under H0 by Θ0 and denote
the support of θ under Ha by Θa. For example, if the hypotheses are
H0 : µ ≤ 100 and Ha : µ > 100, then, Θ0 = (∞, 100] and Θa = (100,∞).

(c) Prior: Before new data are collected, the prior pdf or pmf for θ is denoted
by g(θ).

(d) Posterior: After new data have been collected, the posterior pdf or pmf
for θ is denoted by g(θ|X).

(e) Bayes Loss: The posterior Bayes Loss for action act is

B(act |X) = Eθ [`(θ, act)]

=





∫

Θ0

`(θ, reject H0)g(θ|X) dθ if act = reject H0,
∫

Θa

`(θ, accept H0)g(θ|X) dθ if act = accept H0.

(f) Bayes Test: A Bayes test is the rule that minimizes Bayes Loss.

2. Theorem: When testing a simple null against a simple alternative, the Bayes
test is a Neyman-Pearson test and a Neyman-Pearson rejection region,
f0/fa < K, corresponds to a Bayes test for some prior.

Proof: The null and alternative can be written as H0 : f(x) = f0(x) versus
H1 : f(x) = f1(x). Also, the support of θ has only two points:

Θ = {f0, f1}, Θ0 = {f0}, and Θa = {f1} or, equivalently,

Θ = {H0,H1}, Θ0 = {H0}, and Θa = {H1}.

Denote the prior probabilities of θ as

g0 = P (H0) and g1 = P (H1).

The posterior probabilities are

f(H0|x) =
f(H0,x)

f(x)
=

f(x|H0)f(H0)

f(x|H0)f(H0) + f(x|H1)f(H1)

=
f0(x)g0

f0(x)g0 + f1(x)g1

and
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f(H1|x) =
f(H1,x)

f(x)
=

f(x|H1)f(H1)

f(x|H0)f(H0) + f(x|H1)f(H1)

=
f1(x)g1

f0(x)g0 + f1(x)g1

.

Denote the losses for incorrect decisions by

`(H0, reject H0) = `0 and `(H1, accept H0) = `1.

Note that `0 and `1 are merely scalar constants. Then, the posterior Bayes
losses are

B(reject H0|x) = `0 ×
(

f0(x)g0

f0(x)g0 + f1(x)g1

)
and

B(accept H0|x) = `1 ×
(

f1(x)g1

f0(x)g0 + f1(x)g1

)
.

The Bayes test consists of choosing the action that has the smallest Bayes
loss. Alternatively, the ratio of Bayes losses can be examined:

B(reject H0|x)

B(accept H0|x)
=
`0f0(x)g0

`1f1(x)g1
.

If the ratio is smaller than 1, then the Bayes test is to reject H0, otherwise
accept H0. That is, H0 is rejected if

`0f0(x)g0

`1f1(x)g1

< 1 or, equivalently,

f0(x)

f1(x)
< K, where K =

`1g1

`0g0
.

Accordingly, the Bayes test is a Neyman-Pearson test. Also, a
Neyman-Pearson rejection region, f0/f1 < K, corresponds to a Bayes test,
where the priors and losses satisfy

K =
`1g1

`0g0

.

3. Example 11.9a (with details) A machine that fills bags with flour is adjusted
so that the mean weight in a bag is 16 ounces. To determine whether the
machine is at the correct setting, a sample of bags can be weighed. There is a
constant cost for readjusting the machine. The cost is due to shutting down
the production line, etc. If the machine is not adjusted, then the company
may be over-filling the bags with cost 2(µ− 16) or under-filling the bags with
cost 16 − µ. The under-filling cost is due to customer dissatisfaction.

Consider testing H0 : µ ≤ 16 against Ha : µ > 16 based on a random sample of
size n from N(µ, σ2), where σ2 is known. Furthermore, suppose that the prior
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on µ is N(ν, τ 2). Using the result in Example 2 on page 101 of these notes, the
posterior distribution of µ is normal with

E(µ|x̄) =

(
nτ 2

nτ 2 + σ2

)
x̄ +

(
1 − nτ 2

nτ 2 + σ2

)
ν and

Var(µ|x̄) =

(
n

σ2
+

1

τ 2

)−1

.

If n = 5, x̄ = 16.4, σ2 = 0.052, ν = 16, and τ 2 = 0.002, then the posterior
distribution of µ is N(16.32, 0.022). Suppose that the loss functions are

`(µ, reject H0) =

{
2(16 − µ) if µ ≤ 16

µ− 16 if µ > 16,

and `(µ, accept H0) = `1.

The Bayes losses are

B(reject H0|x) = Eµ|x [`(µ, reject H0)]

= `1 × P (reject H0|µ 6= 16,x) + `1 × P (reject H0|µ = 16,x) = `1, and

B(accept H0|x) = Eµ|x [`(µ, accept H0)]

=

∫ 16

−∞

2(16 − µ)fµ|x(µ|x) dµ+

∫ ∞

16

(µ− 16)fµ|x(µ|x) dµ.

The latter integral can be computed as follows. Denote the conditional mean
and variance of µ as µµ|x and σ2

µ|x. That is,

µµ|x = E(µ|x) and σ2
µ|x = Var(µ|x).

Transform from µ to

z =
µ− µµ|x

σµ|x

.

Denote the pdf of the standard normal distribution as ϕ(z). Then,

µ = zσµ|x + µµ|x,

dµ = σµ|x dz, and

B(accept H0|x) =

∫ (16−µµ|x)/σµ|x

−∞

2(16 − σµ|xz − µµ|x)ϕ(z) dz

+

∫ ∞

(16−µµ|x)/σµ|x

(σµ|xz + µµ|x − 16)ϕ(z) dz

= −
∫ −16

−∞

2(0.32 + 0.02z)ϕ(z) dz +

∫ ∞

−16

(0.02z + 0.32))ϕ(z) dz

≈
∫ ∞

−16

(0.02z + 0.32))ϕ(z) dz
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≈ E(0.02Z + 0.32) = 0.032,

because essentially the entire standard normal distribution lies in the interval
(−16,∞) and essentially none of the distribution lies in the interval
(−∞,−16). The Bayes test rejects H0 if `1 ≤ 0.32 and accepts H0 if `1 > 0.32.

A Matlab program to compute the integrals together with the program output
are listed below.

n=5;

xbar=16.4;

sigma2=.05^2;

nu=16;

tau2=0.002;

w=n*tau2/(n*tau2+sigma2);

m=w*xbar+(1-w)*nu;

v2=(n/sigma2 + 1/tau2)^(-1);

v=sqrt(v2);

disp([’Conditional Mean and SD of mu are’])

disp([m v])

g1 = inline(’2*(16-z*s-m).*normpdf(z)’, ’z’,’s’,’m’);

g2 = inline(’(z*s+m-16).*normpdf(z)’,’z’,’s’,’m’);

z0=(16-m)/v;

tol=1.e-10;

Integral_1=quadl(g1,-30,z0,tol,[],v,m)

Integral_2=quadl(g2,z0,30,tol,[],v,m)

Bayes_Loss = Integral_1+Integral_2

Conditional Mean and SD of mu are 16.3200 0.0200

Integral_1 = 5.6390e-67

Integral_2 = 0.3200

Bayes_Loss = 0.3200

4. Example, Problem 11-33 (with details): The goal is to conduct a Bayes Test of

H0 : p ≤ 1
2

against Ha : p > 1
2

based on a random sample of size n from
Bern(p). The losses are

`(p, act) = 0 if the correct decision is made

`(H0, reject H0) = `0, and

`(Ha, accept H0) = `1.

The prior on p is Beta(α, β). Using the results in example 1 on page 100 of
these notes, the posterior distribution of p conditional on x is
Beta(α + y, β + n− y), where y is the observed number of successes on the n
Bernoulli trials.
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The Bayes losses are

B(reject H0|x) = Ep|x [`(p, reject H0)]

=

∫

H0

`0
pα+y−1(1 − p)β+n−y−1

B(α + y, β + n− y)
dp

= `0

∫ 0.5

0

pα+y−1(1 − p)β+n−y−1

B(α + y, β + n− y)
dp

= `0 × P (p ≤ 0.5|x) and

B(accept H0|x) = Ep|x [`(p, accept H0)]

=

∫

Ha

`1
pα+y−1(1 − p)β+n−y−1

B(α + y, β + n− y)
dp

= `1

∫ 1

0.5

pα+y−1(1 − p)β+n−y−1

B(α + y, β + n− y)
dp

= `1 × P (p > 0.5|x) .

The required probabilities can be computed using any computer routine that
calculates the CDF of a beta distribution.

If n = 10, y = 3, α = 7, β = 3, `0 = 3, `1 = 2, then the posterior distribution
of p is Beta(10, 10) and the Bayes Losses are

B(reject H0|x) = 3P (W ≤ 0.5) and B(accept H0|x) = 2P (W > 0.5),

where W ∼ Beta(10, 10). This beta distribution is symmetric around 0.5 and,
therefore, each of the above probabilities is 1

2
. The Bayes test is to accept H0

because the Bayes loss is 1, whereas the Bayes loss for rejection is 1.5.
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Appendix A

GREEK ALPHABET

Name Lower Case Upper Case
Alpha α A
Beta β B
Gamma γ Γ
Delta δ ∆
Epsilon ε or ε E
Zeta ζ Z
Eta η H
Theta θ or ϑ Θ
Iota ι I
Kappa κ K
Lambda λ Λ
Mu µ M
Nu ν N
Xi ξ Ξ
Omicron o O
Pi π Π
Rho ρ or % P
Sigma σ or ς Σ
Tau τ T
Upsilon υ Υ
Phi φ or ϕ Φ
Chi χ X
Psi ψ Ψ
Omega ω Ω
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Appendix B

ABBREVIATIONS

• BF: Bayes Factor. If H is a hypothesis and T is a sufficient statistic, then

BF =
Posterior odds of H

Prior odds of H
=
P (H|T = t)/P (Hc|T = t)

P (H)/P (Hc)
=

fT|H(t|H)

fT|Hc(t|Hc)
.

• CDF or cdf: Cumulative Distribution Function. If X is a random variable,
then

FX(x) = P (X ≤ x)

is the cdf of X.

• CLT: Central Limit Theorem. If X1, X2, . . . , Xn is a random sample of size n
from a population with mean µX and variance σ2

X , then, the distribution of

Zn =
X − µX

σX/
√
n

converges to N(0, 1) as n→ ∞.

• CRLB: Cramér-Rao Lower Bound. The CRLB is the lower bound on the
variance of an unbiased estimator of g(θ). The bound is

CRLB =

[
∂g(θ)

∂θ

]2

Iθ
,

where Iθ is Fisher’s information.

• LR: Likelihood Ratio. When testing a simple null against a simple alternative,
the LR is

Λ =
f0(x)

f1(x)
.

When testing a composite null against a composite alternative, the LR is

Λ =

sup
θ∈Θ0

f(x|θ)

sup
θ∈Θa

f(x|θ) ,

where Θ0 and Θa are the parameter spaces under H0 and Ha, respectively.
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• LRT: Likelihood Ratio Test. The LRT of H0 versus Ha is to reject H0 for small
values of the LR. The critical value is chosen so that the size of the test is α.

• MGF or mgf: Moment Generating Function. If X is a random variable, then

ψX(t) = E
(
etX
)

is the mgf of X.

• MLE: Maximum Likelihood Estimator. Suppose that Xi, X2, . . . , Xn is a
random sample from fX(x|θ), where θ is a k × 1 vector of parameters. A

maximum likelihood estimator of θ is any value θ̂ that maximizes the
likelihood function and is a point in the parameter space or on the boundary
of the parameter space.

• MSE: Mean Square Error. If T is an estimator of a parameter, θ, then

MSET (θ) = E(T − θ)2 = σ2
T + bias2,

where bias = E(T − θ).

• PDF or pdf: Probability Density Function. If X is a continuous random
variable, then

d

dx
FX(x) = fX(x)

is the pdf of X.

• PF or pf: Probability Function. If X is a discrete random variable, then

P (X = x) = fX(x)

is the pf of X. The terms pf and pmf are interchangeable.

• PGF or pgf: Probability Generating Function. If X is a random variable, then

ηX(t) = E
(
tX
)

is the pgf of X. The pgf is most useful for discrete random variables.

• PMF or pmf: Probability Mass Function. If X is a discrete random variable,
then

P (X = x) = fX(x)

is the pmf of X. The terms pmf and pf are interchangeable.

• RV or rv: Random Variable.

• UMP Test: Uniformly Most Powerful Test. A UMP test of H0 against Ha is
most powerful regardless of the value of the parameter under H0 and Ha.



Appendix C

PRACTICE EXAMS

C.1 Equation Sheet

Series and Limits

n∑

i=1

ri =





1 − rn+1

1 − r
if r 6= 1

n+ 1 if r = 1

∞∑

i=1

ri =





1 − rn+1

1 − r
if |r| < 1

∞ if r > 1

undefined if r < −1
n∑

i=1

i =
n(n+ 1)

2

n∑

i=1

i2 =
n(n+ 1)(2n+ 1)

6

(a+ b)n =

n∑

i=0

(
n

i

)
aibn−i ln(1 + ε) = −

∞∑

i=1

(−ε)i

i
if |ε| < 1

ln(1 + ε) = ε+ o(ε) if |ε| < 1

lim
n→∞

(
1 +

a

n
+ o(n−1)

)n

= ea ea =
∞∑

i=0

ai

i!

Distribution of Selected Sums & Expectations

Xi ∼ iid Bern(θ) =⇒ E(Xi) = θ; Var(Xi) = θ(1 − θ); and

n∑

i=1

Xi ∼ Bin(n, θ)

Xi ∼ iid Geom(θ) =⇒ E(Xi) =
1

θ
; Var(Xi) =

1 − θ

θ2
; and

n∑

i=1

Xi ∼ NegBin(n, θ)

Xi ∼ iid Poi(λ) =⇒ E(Xi) = λ; Var(Xi) = λ; and
n∑

i=1

Xi ∼ Poi(nλ)
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Xi ∼ iid Expon(λ) =⇒ E(Xi) =
1

λ
; Var(Xi) =

1

λ2
; and

n∑

i=1

Xi ∼ Gamma(n, λ)

Xi ∼ iid NegBin(k, θ) =⇒ E(Xi) =
k

θ
; Var(Xi) =

k(1 − θ)

θ2
; and

n∑

i=1

Xi ∼ NegBin(nk, θ)

C.2 Exam 1

1. Suppose X ∼ Gam(α, λ);

fX(x) =
xα−1λαe−λx

Γ(α)
I(0,∞)(x),

where α > 0 and λ > 0.

(a) Verify that the mgf of X is

ψX(t) =

(
λ

λ− t

)α

.

(b) For what values of t does the mgf exist?

2. Suppose that W1, . . . ,Wn is a random sample of size n from Expon(λ);

fW (w) = λe−λwI(0,∞)(w),

where λ > 0. Use mgfs to obtain the distribution of Y =
∑n

i=1Wi. Hint: The
mgf of W can be obtained from question #1 because the exponential
distribution is a special case of the gamma distribution.

3. Suppose that X is a random variable with mgf

ψX(t) =
1

1 − t
.

(a) Give the pdf of X.

(b) Derive an expression for E(Xr); r = 0, 1, 2, . . ..

4. Suppose that X ∼ N(µX , σ
2
X); Y ∼ N(µY , σ

2
Y ); and that X Y . The mgf of X

is

ψX(t) = exp

{
tµX +

t2σ2
X

2

}
.
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(a) Verify that E(X) = µX and that Var(X) = σ2
X .

(b) Prove that X − Y ∼ N(µX − µY , σ
2
X + σ2

Y ).

5. Suppose that X ∼ LogN(µ, σ2). Compute

Pr
(
eµ ≤ X ≤ eµ+σ

)
.

6. Let Wi for i = 1, . . . , n and Xi for i = 1, . . . , m be iid random variables, each
with distribution N(0, σ2).

(a) Give the distribution of

U =
n∑

i=1

(
Wi

σ

)2

.

Justify your answer. Hint: First give the distribution of Wi/σ.

(b) Give the distribution of

V =
(m
n

)




n∑

i=1

W 2
i

m∑

i=1

X2
i



.

Justify your answer.

7. Suppose that Xi is a random sample of size n from an infinite sized population
having mean µ and variance σ2. Let X be the sample mean.

(a) Verify that E(X) = µ

(b) Verify that Var(X) = σ2/n.

(c) Let S2 be the sample variance;

S2 =
1

n− 1

n∑

i=1

(Xi −X)2 =
1

n− 1

[
n∑

i=1

X2
i − nX

2

]
.

Verify that E(S2) = σ2.

C.3 Exam 2

1. Suppose that X1, X2, . . . , Xn is a random sample of size n from fX(x|α, β),
where

fX(x|α, β) =
αβα

xα+1 I(β,∞)(x),

where α > 0 and β > 0 are unknown parameters. This distribution is called
the Pareto(α, β) distribution.
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(a) Find a two dimensional sufficient statistic.

(b) Verify that the pdf of X(1) is Pareto(nα, β). That is,

fX(1)
(x|α, β) =

nαβnα

xnα+1 I(β,∞)(x).

(c) The joint sampling distribution of the sufficient statistics can be studied
using simulation. Let U1, U2, . . . , Un be a random sample from Unif(0, 1).
Show how Ui can be transformed into a random variable having a
Pareto(α, β) distribution.

2. Suppose that X ∼ Gamma(α, λ), where λ is known.

(a) Verify that the distribution of X belongs to the exponential family.

(b) Let X1, X2, . . . , Xn be a random sample from the Gamma(α, λ)
distribution, where λ is known. Use the results from part (a) to find a
sufficient statistic.

(c) Give the likelihood function that corresponds to part (b).

3. Consider the problem of making inferences about θ, the parameter of a
geometric distribution. Let X1, X2, . . . , Xn be a random sample from
fX|Θ(x|θ), where

fX|Θ(x|θ) = θ(1 − θ)x−1I{1,2,...}(x).

(a) Verify that T =
∑n

i=1Xi is a sufficient statistic.

(b) Verify that the conditional distribution P (X = x|T = t) does not depend
on θ.

(c) Suppose that the investigator’s prior beliefs about Θ can be summarized
as Θ ∼ Beta(α, β). Find the posterior distribution of Θ and find the
expectation of Θ conditional on T = t.

(d) Let Z1, Z2, . . . , Zk be a sequence of future Geom(θ) random variables and
let Y =

∑k
i=1 Zi. Find the posterior predictive distribution of Y given T .

That is, find fY |T (y|t).

4. Let X1, X2, . . . , Xn be a random sample of size n from a distribution having
mean µ, variance σ2. Define Zn as

Zn =
X − µ

σ/
√
n
.

(a) State the central limit theorem.

(b) Verify that

Zn =
n∑

i=1

Ui, where Ui =
Z∗

i√
n

and Z∗
i =

Xi − µ

σ
.
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(c) Assume that X has a moment generating function. Verify that

ψZn(t) = [ψUi
(t)]n .

(d) Verify that the mean and variance of Ui are 0 and n−1, respectively.

(e) Complete the proof of the central limit theorem.

C.4 Exam 3

1. Let X be a random variable; let h(X) be a non-negative function whose
expectation exists; and let k be any positive number. Chebyshev’s inequality
reveals that

P [h(X) ≥ k] ≤ E [h(X)]

k
or, equivalently, that

P [h(X) < k] ≥ 1 − E [h(X)]

k
.

(a) Define what it means for an estimator Tn to be consistent for a
parameter θ.

(b) Use Chebyshev’s inequality to verify that

lim
n→∞

MSETn(θ) = 0 =⇒ Tn
prob−→ θ.

2. Suppose that X1, X2, . . . , Xn is a random sample from Bern(θ).

(a) Give the likelihood function.

(b) Find a sufficient statistic.

(c) Verify that the score function is

S(θ|X) =

∑n
i=1Xi − nθ

θ(1 − θ)
.

(d) Derive the MLE of θ.

(e) Derive the MLE of
1

θ
.

(f) Derive Fisher’s information.

(g) Verify or refute the claim that the MLE of θ is the minimum variance
unbiased estimator of θ.

3. Suppose that Xi ∼ iid Expon(λ) for i = 1, . . . , n. It can be shown that
Y =

∑n
i=1Xi is sufficient and that Y ∼ Gamma(n, λ).

(a) Derive the moment generating function of Q = 2λ
∑n

i=1Xi and verify
that Q is a pivotal quantity. Use the moment generating function of Q to
determine its distribution.
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(b) Use Q to find a 100(1 − α)% confidence interval for λ.

4. Suppose that X1, X2, . . . , Xn is a random sample from fX(x|θ), where

fX(x|θ) = θxθ−1I(0,1)(x) and θ > 0.

(a) Verify or refute the claim that the distribution of X belongs to the
exponential class.

(b) Find the most powerful test of H0 : θ = θ0 versus Ha : θ = θa, where
θa > θ0.

(c) Find the most uniformly powerful test of H0 : θ = θ0 versus Ha : θ > θ0.

(d) Suppose that the investigator’s prior beliefs about θ can be summarized
as Θ ∼ Gamma(α, λ). Find the posterior distribution of Θ. Hint: write
xi as xi = eln(xi).

(e) Find the Bayes estimator of θ based on a squared error loss function.


